MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj3 Structured version   Visualization version   GIF version

Theorem lsmdisj3 18536
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisj.i (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
lsmdisj2.i (𝜑 → (𝑆𝑇) = { 0 })
lsmdisj3.z 𝑍 = (Cntz‘𝐺)
lsmdisj3.s (𝜑𝑆 ⊆ (𝑍𝑇))
Assertion
Ref Expression
lsmdisj3 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })

Proof of Theorem lsmdisj3
StepHypRef Expression
1 lsmcntz.p . 2 = (LSSum‘𝐺)
2 lsmcntz.t . 2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3 lsmcntz.s . 2 (𝜑𝑆 ∈ (SubGrp‘𝐺))
4 lsmcntz.u . 2 (𝜑𝑈 ∈ (SubGrp‘𝐺))
5 lsmdisj.o . 2 0 = (0g𝐺)
6 lsmdisj3.s . . . . 5 (𝜑𝑆 ⊆ (𝑍𝑇))
7 lsmdisj3.z . . . . . 6 𝑍 = (Cntz‘𝐺)
81, 7lsmcom2 18510 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝑆 𝑇) = (𝑇 𝑆))
93, 2, 6, 8syl3anc 1364 . . . 4 (𝜑 → (𝑆 𝑇) = (𝑇 𝑆))
109ineq1d 4108 . . 3 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = ((𝑇 𝑆) ∩ 𝑈))
11 lsmdisj.i . . 3 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
1210, 11eqtr3d 2833 . 2 (𝜑 → ((𝑇 𝑆) ∩ 𝑈) = { 0 })
13 incom 4099 . . 3 (𝑇𝑆) = (𝑆𝑇)
14 lsmdisj2.i . . 3 (𝜑 → (𝑆𝑇) = { 0 })
1513, 14syl5eq 2843 . 2 (𝜑 → (𝑇𝑆) = { 0 })
161, 2, 3, 4, 5, 12, 15lsmdisj2 18535 1 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  cin 3858  wss 3859  {csn 4472  cfv 6225  (class class class)co 7016  0gc0g 16542  SubGrpcsubg 18027  Cntzccntz 18186  LSSumclsm 18489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-grp 17864  df-minusg 17865  df-subg 18030  df-cntz 18188  df-lsm 18491
This theorem is referenced by:  dmdprdsplit2lem  18884
  Copyright terms: Public domain W3C validator