MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubg Structured version   Visualization version   GIF version

Theorem lsmsubg 19687
Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubg ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))

Proof of Theorem lsmsubg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
2 subgsubm 19179 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ∈ (SubMnd‘𝐺))
31, 2syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubMnd‘𝐺))
4 simp2 1136 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
5 subgsubm 19179 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ∈ (SubMnd‘𝐺))
64, 5syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
7 simp3 1137 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑍𝑈))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
9 lsmsubg.z . . . 4 𝑍 = (Cntz‘𝐺)
108, 9lsmsubm 19686 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
113, 6, 7, 10syl3anc 1370 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
12 eqid 2735 . . . . . 6 (+g𝐺) = (+g𝐺)
1312, 8lsmelval 19682 . . . . 5 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
14133adant3 1131 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
151adantr 480 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
16 subgrcl 19162 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝐺 ∈ Grp)
18 eqid 2735 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
1918subgss 19158 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
2015, 19syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (Base‘𝐺))
21 simprl 771 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎𝑇)
2220, 21sseldd 3996 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎 ∈ (Base‘𝐺))
234adantr 480 . . . . . . . . . . 11 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
2418subgss 19158 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2523, 24syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ⊆ (Base‘𝐺))
26 simprr 773 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏𝑈)
2725, 26sseldd 3996 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏 ∈ (Base‘𝐺))
28 eqid 2735 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
2918, 12, 28grpinvadd 19049 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3017, 22, 27, 29syl3anc 1370 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
317adantr 480 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (𝑍𝑈))
3228subginvcl 19166 . . . . . . . . . . 11 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑇) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3315, 21, 32syl2anc 584 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3431, 33sseldd 3996 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ (𝑍𝑈))
3528subginvcl 19166 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑏𝑈) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3623, 26, 35syl2anc 584 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3712, 9cntzi 19360 . . . . . . . . 9 ((((invg𝐺)‘𝑎) ∈ (𝑍𝑈) ∧ ((invg𝐺)‘𝑏) ∈ 𝑈) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3834, 36, 37syl2anc 584 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3930, 38eqtr4d 2778 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)))
4012, 8lsmelvali 19683 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑎) ∈ 𝑇 ∧ ((invg𝐺)‘𝑏) ∈ 𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4115, 23, 33, 36, 40syl22anc 839 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4239, 41eqeltrd 2839 . . . . . 6 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈))
43 fveq2 6907 . . . . . . 7 (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝑎(+g𝐺)𝑏)))
4443eleq1d 2824 . . . . . 6 (𝑥 = (𝑎(+g𝐺)𝑏) → (((invg𝐺)‘𝑥) ∈ (𝑇 𝑈) ↔ ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈)))
4542, 44syl5ibrcom 247 . . . . 5 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4645rexlimdvva 3211 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4714, 46sylbid 240 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4847ralrimiv 3143 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))
491, 16syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Grp)
5028issubg3 19175 . . 3 (𝐺 ∈ Grp → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5149, 50syl 17 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5211, 48, 51mpbir2and 713 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  SubMndcsubmnd 18808  Grpcgrp 18964  invgcminusg 18965  SubGrpcsubg 19151  Cntzccntz 19346  LSSumclsm 19667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-subg 19154  df-cntz 19348  df-lsm 19669
This theorem is referenced by:  pj1ghm  19736  lsmsubg2  19892  dprd2da  20077  dmdprdsplit2lem  20080  dprdsplit  20083
  Copyright terms: Public domain W3C validator