MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubg Structured version   Visualization version   GIF version

Theorem lsmsubg 19259
Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubg ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))

Proof of Theorem lsmsubg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
2 subgsubm 18777 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ∈ (SubMnd‘𝐺))
31, 2syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubMnd‘𝐺))
4 simp2 1136 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
5 subgsubm 18777 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ∈ (SubMnd‘𝐺))
64, 5syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
7 simp3 1137 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑍𝑈))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
9 lsmsubg.z . . . 4 𝑍 = (Cntz‘𝐺)
108, 9lsmsubm 19258 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
113, 6, 7, 10syl3anc 1370 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
12 eqid 2738 . . . . . 6 (+g𝐺) = (+g𝐺)
1312, 8lsmelval 19254 . . . . 5 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
14133adant3 1131 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
151adantr 481 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
16 subgrcl 18760 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝐺 ∈ Grp)
18 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
1918subgss 18756 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
2015, 19syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (Base‘𝐺))
21 simprl 768 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎𝑇)
2220, 21sseldd 3922 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎 ∈ (Base‘𝐺))
234adantr 481 . . . . . . . . . . 11 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
2418subgss 18756 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2523, 24syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ⊆ (Base‘𝐺))
26 simprr 770 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏𝑈)
2725, 26sseldd 3922 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏 ∈ (Base‘𝐺))
28 eqid 2738 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
2918, 12, 28grpinvadd 18653 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3017, 22, 27, 29syl3anc 1370 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
317adantr 481 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (𝑍𝑈))
3228subginvcl 18764 . . . . . . . . . . 11 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑇) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3315, 21, 32syl2anc 584 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3431, 33sseldd 3922 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ (𝑍𝑈))
3528subginvcl 18764 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑏𝑈) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3623, 26, 35syl2anc 584 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3712, 9cntzi 18935 . . . . . . . . 9 ((((invg𝐺)‘𝑎) ∈ (𝑍𝑈) ∧ ((invg𝐺)‘𝑏) ∈ 𝑈) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3834, 36, 37syl2anc 584 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3930, 38eqtr4d 2781 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)))
4012, 8lsmelvali 19255 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑎) ∈ 𝑇 ∧ ((invg𝐺)‘𝑏) ∈ 𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4115, 23, 33, 36, 40syl22anc 836 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4239, 41eqeltrd 2839 . . . . . 6 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈))
43 fveq2 6774 . . . . . . 7 (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝑎(+g𝐺)𝑏)))
4443eleq1d 2823 . . . . . 6 (𝑥 = (𝑎(+g𝐺)𝑏) → (((invg𝐺)‘𝑥) ∈ (𝑇 𝑈) ↔ ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈)))
4542, 44syl5ibrcom 246 . . . . 5 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4645rexlimdvva 3223 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4714, 46sylbid 239 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4847ralrimiv 3102 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))
491, 16syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Grp)
5028issubg3 18773 . . 3 (𝐺 ∈ Grp → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5149, 50syl 17 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5211, 48, 51mpbir2and 710 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  SubMndcsubmnd 18429  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749  Cntzccntz 18921  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-cntz 18923  df-lsm 19241
This theorem is referenced by:  pj1ghm  19309  lsmsubg2  19460  dprd2da  19645  dmdprdsplit2lem  19648  dprdsplit  19651
  Copyright terms: Public domain W3C validator