MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubg Structured version   Visualization version   GIF version

Theorem lsmsubg 19043
Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubg ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))

Proof of Theorem lsmsubg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1138 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
2 subgsubm 18565 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ∈ (SubMnd‘𝐺))
31, 2syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubMnd‘𝐺))
4 simp2 1139 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
5 subgsubm 18565 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ∈ (SubMnd‘𝐺))
64, 5syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
7 simp3 1140 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑍𝑈))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
9 lsmsubg.z . . . 4 𝑍 = (Cntz‘𝐺)
108, 9lsmsubm 19042 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
113, 6, 7, 10syl3anc 1373 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
12 eqid 2737 . . . . . 6 (+g𝐺) = (+g𝐺)
1312, 8lsmelval 19038 . . . . 5 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
14133adant3 1134 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
151adantr 484 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
16 subgrcl 18548 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝐺 ∈ Grp)
18 eqid 2737 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
1918subgss 18544 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
2015, 19syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (Base‘𝐺))
21 simprl 771 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎𝑇)
2220, 21sseldd 3902 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎 ∈ (Base‘𝐺))
234adantr 484 . . . . . . . . . . 11 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
2418subgss 18544 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2523, 24syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ⊆ (Base‘𝐺))
26 simprr 773 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏𝑈)
2725, 26sseldd 3902 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏 ∈ (Base‘𝐺))
28 eqid 2737 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
2918, 12, 28grpinvadd 18441 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3017, 22, 27, 29syl3anc 1373 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
317adantr 484 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (𝑍𝑈))
3228subginvcl 18552 . . . . . . . . . . 11 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑇) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3315, 21, 32syl2anc 587 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3431, 33sseldd 3902 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ (𝑍𝑈))
3528subginvcl 18552 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑏𝑈) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3623, 26, 35syl2anc 587 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3712, 9cntzi 18723 . . . . . . . . 9 ((((invg𝐺)‘𝑎) ∈ (𝑍𝑈) ∧ ((invg𝐺)‘𝑏) ∈ 𝑈) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3834, 36, 37syl2anc 587 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3930, 38eqtr4d 2780 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)))
4012, 8lsmelvali 19039 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑎) ∈ 𝑇 ∧ ((invg𝐺)‘𝑏) ∈ 𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4115, 23, 33, 36, 40syl22anc 839 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4239, 41eqeltrd 2838 . . . . . 6 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈))
43 fveq2 6717 . . . . . . 7 (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝑎(+g𝐺)𝑏)))
4443eleq1d 2822 . . . . . 6 (𝑥 = (𝑎(+g𝐺)𝑏) → (((invg𝐺)‘𝑥) ∈ (𝑇 𝑈) ↔ ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈)))
4542, 44syl5ibrcom 250 . . . . 5 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4645rexlimdvva 3213 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4714, 46sylbid 243 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4847ralrimiv 3104 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))
491, 16syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Grp)
5028issubg3 18561 . . 3 (𝐺 ∈ Grp → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5149, 50syl 17 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5211, 48, 51mpbir2and 713 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  wss 3866  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  SubMndcsubmnd 18217  Grpcgrp 18365  invgcminusg 18366  SubGrpcsubg 18537  Cntzccntz 18709  LSSumclsm 19023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-subg 18540  df-cntz 18711  df-lsm 19025
This theorem is referenced by:  pj1ghm  19093  lsmsubg2  19244  dprd2da  19429  dmdprdsplit2lem  19432  dprdsplit  19435
  Copyright terms: Public domain W3C validator