Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β π β (SubGrpβπΊ)) |
2 | | subgsubm 19022 |
. . . 4
β’ (π β (SubGrpβπΊ) β π β (SubMndβπΊ)) |
3 | 1, 2 | syl 17 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β π β (SubMndβπΊ)) |
4 | | simp2 1137 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β π β (SubGrpβπΊ)) |
5 | | subgsubm 19022 |
. . . 4
β’ (π β (SubGrpβπΊ) β π β (SubMndβπΊ)) |
6 | 4, 5 | syl 17 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β π β (SubMndβπΊ)) |
7 | | simp3 1138 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β π β (πβπ)) |
8 | | lsmsubg.p |
. . . 4
β’ β =
(LSSumβπΊ) |
9 | | lsmsubg.z |
. . . 4
β’ π = (CntzβπΊ) |
10 | 8, 9 | lsmsubm 19515 |
. . 3
β’ ((π β (SubMndβπΊ) β§ π β (SubMndβπΊ) β§ π β (πβπ)) β (π β π) β (SubMndβπΊ)) |
11 | 3, 6, 7, 10 | syl3anc 1371 |
. 2
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β (π β π) β (SubMndβπΊ)) |
12 | | eqid 2732 |
. . . . . 6
β’
(+gβπΊ) = (+gβπΊ) |
13 | 12, 8 | lsmelval 19511 |
. . . . 5
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ)) β (π₯ β (π β π) β βπ β π βπ β π π₯ = (π(+gβπΊ)π))) |
14 | 13 | 3adant3 1132 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β (π₯ β (π β π) β βπ β π βπ β π π₯ = (π(+gβπΊ)π))) |
15 | 1 | adantr 481 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β (SubGrpβπΊ)) |
16 | | subgrcl 19005 |
. . . . . . . . . 10
β’ (π β (SubGrpβπΊ) β πΊ β Grp) |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β πΊ β Grp) |
18 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(BaseβπΊ) =
(BaseβπΊ) |
19 | 18 | subgss 19001 |
. . . . . . . . . . 11
β’ (π β (SubGrpβπΊ) β π β (BaseβπΊ)) |
20 | 15, 19 | syl 17 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β (BaseβπΊ)) |
21 | | simprl 769 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β π) |
22 | 20, 21 | sseldd 3982 |
. . . . . . . . 9
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β (BaseβπΊ)) |
23 | 4 | adantr 481 |
. . . . . . . . . . 11
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β (SubGrpβπΊ)) |
24 | 18 | subgss 19001 |
. . . . . . . . . . 11
β’ (π β (SubGrpβπΊ) β π β (BaseβπΊ)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β (BaseβπΊ)) |
26 | | simprr 771 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β π) |
27 | 25, 26 | sseldd 3982 |
. . . . . . . . 9
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β (BaseβπΊ)) |
28 | | eqid 2732 |
. . . . . . . . . 10
β’
(invgβπΊ) = (invgβπΊ) |
29 | 18, 12, 28 | grpinvadd 18897 |
. . . . . . . . 9
β’ ((πΊ β Grp β§ π β (BaseβπΊ) β§ π β (BaseβπΊ)) β ((invgβπΊ)β(π(+gβπΊ)π)) = (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ))) |
30 | 17, 22, 27, 29 | syl3anc 1371 |
. . . . . . . 8
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β ((invgβπΊ)β(π(+gβπΊ)π)) = (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ))) |
31 | 7 | adantr 481 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β π β (πβπ)) |
32 | 28 | subginvcl 19009 |
. . . . . . . . . . 11
β’ ((π β (SubGrpβπΊ) β§ π β π) β ((invgβπΊ)βπ) β π) |
33 | 15, 21, 32 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β ((invgβπΊ)βπ) β π) |
34 | 31, 33 | sseldd 3982 |
. . . . . . . . 9
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β ((invgβπΊ)βπ) β (πβπ)) |
35 | 28 | subginvcl 19009 |
. . . . . . . . . 10
β’ ((π β (SubGrpβπΊ) β§ π β π) β ((invgβπΊ)βπ) β π) |
36 | 23, 26, 35 | syl2anc 584 |
. . . . . . . . 9
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β ((invgβπΊ)βπ) β π) |
37 | 12, 9 | cntzi 19187 |
. . . . . . . . 9
β’
((((invgβπΊ)βπ) β (πβπ) β§ ((invgβπΊ)βπ) β π) β (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ)) = (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ))) |
38 | 34, 36, 37 | syl2anc 584 |
. . . . . . . 8
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ)) = (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ))) |
39 | 30, 38 | eqtr4d 2775 |
. . . . . . 7
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β ((invgβπΊ)β(π(+gβπΊ)π)) = (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ))) |
40 | 12, 8 | lsmelvali 19512 |
. . . . . . . 8
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ)) β§ (((invgβπΊ)βπ) β π β§ ((invgβπΊ)βπ) β π)) β (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ)) β (π β π)) |
41 | 15, 23, 33, 36, 40 | syl22anc 837 |
. . . . . . 7
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β (((invgβπΊ)βπ)(+gβπΊ)((invgβπΊ)βπ)) β (π β π)) |
42 | 39, 41 | eqeltrd 2833 |
. . . . . 6
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β ((invgβπΊ)β(π(+gβπΊ)π)) β (π β π)) |
43 | | fveq2 6888 |
. . . . . . 7
β’ (π₯ = (π(+gβπΊ)π) β ((invgβπΊ)βπ₯) = ((invgβπΊ)β(π(+gβπΊ)π))) |
44 | 43 | eleq1d 2818 |
. . . . . 6
β’ (π₯ = (π(+gβπΊ)π) β (((invgβπΊ)βπ₯) β (π β π) β ((invgβπΊ)β(π(+gβπΊ)π)) β (π β π))) |
45 | 42, 44 | syl5ibrcom 246 |
. . . . 5
β’ (((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β§ (π β π β§ π β π)) β (π₯ = (π(+gβπΊ)π) β ((invgβπΊ)βπ₯) β (π β π))) |
46 | 45 | rexlimdvva 3211 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β (βπ β π βπ β π π₯ = (π(+gβπΊ)π) β ((invgβπΊ)βπ₯) β (π β π))) |
47 | 14, 46 | sylbid 239 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β (π₯ β (π β π) β ((invgβπΊ)βπ₯) β (π β π))) |
48 | 47 | ralrimiv 3145 |
. 2
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β βπ₯ β (π β π)((invgβπΊ)βπ₯) β (π β π)) |
49 | 1, 16 | syl 17 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β πΊ β Grp) |
50 | 28 | issubg3 19018 |
. . 3
β’ (πΊ β Grp β ((π β π) β (SubGrpβπΊ) β ((π β π) β (SubMndβπΊ) β§ βπ₯ β (π β π)((invgβπΊ)βπ₯) β (π β π)))) |
51 | 49, 50 | syl 17 |
. 2
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β ((π β π) β (SubGrpβπΊ) β ((π β π) β (SubMndβπΊ) β§ βπ₯ β (π β π)((invgβπΊ)βπ₯) β (π β π)))) |
52 | 11, 48, 51 | mpbir2and 711 |
1
β’ ((π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ) β§ π β (πβπ)) β (π β π) β (SubGrpβπΊ)) |