MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj3b Structured version   Visualization version   GIF version

Theorem lsmdisj3b 18795
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisj3b.z 𝑍 = (Cntz‘𝐺)
lsmdisj3b.2 (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
lsmdisj3b (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 𝑈)) = { 0 } ∧ (𝑇𝑈) = { 0 })))

Proof of Theorem lsmdisj3b
StepHypRef Expression
1 lsmcntz.p . . 3 = (LSSum‘𝐺)
2 lsmcntz.s . . 3 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3 lsmcntz.u . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 lsmcntz.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
5 lsmdisj.o . . 3 0 = (0g𝐺)
61, 2, 3, 4, 5lsmdisj2b 18793 . 2 (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑈 𝑇)) = { 0 } ∧ (𝑈𝑇) = { 0 })))
7 lsmdisj3b.2 . . . . . 6 (𝜑𝑇 ⊆ (𝑍𝑈))
8 lsmdisj3b.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
91, 8lsmcom2 18759 . . . . . 6 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
104, 3, 7, 9syl3anc 1368 . . . . 5 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
1110ineq2d 4164 . . . 4 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = (𝑆 ∩ (𝑈 𝑇)))
1211eqeq1d 2823 . . 3 (𝜑 → ((𝑆 ∩ (𝑇 𝑈)) = { 0 } ↔ (𝑆 ∩ (𝑈 𝑇)) = { 0 }))
13 incom 4153 . . . . 5 (𝑇𝑈) = (𝑈𝑇)
1413a1i 11 . . . 4 (𝜑 → (𝑇𝑈) = (𝑈𝑇))
1514eqeq1d 2823 . . 3 (𝜑 → ((𝑇𝑈) = { 0 } ↔ (𝑈𝑇) = { 0 }))
1612, 15anbi12d 633 . 2 (𝜑 → (((𝑆 ∩ (𝑇 𝑈)) = { 0 } ∧ (𝑇𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑈 𝑇)) = { 0 } ∧ (𝑈𝑇) = { 0 })))
176, 16bitr4d 285 1 (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 𝑈)) = { 0 } ∧ (𝑇𝑈) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  cin 3909  wss 3910  {csn 4540  cfv 6328  (class class class)co 7130  0gc0g 16692  SubGrpcsubg 18252  Cntzccntz 18424  LSSumclsm 18738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-grp 18085  df-minusg 18086  df-subg 18255  df-cntz 18426  df-oppg 18453  df-lsm 18740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator