| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmdisj3b | Structured version Visualization version GIF version | ||
| Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
| lsmdisj3b.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| lsmdisj3b.2 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Ref | Expression |
|---|---|
| lsmdisj3b | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
| 2 | lsmcntz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 3 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 4 | lsmcntz.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 5 | lsmdisj.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | lsmdisj2b 19706 | . 2 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑈 ⊕ 𝑇)) = { 0 } ∧ (𝑈 ∩ 𝑇) = { 0 }))) |
| 7 | lsmdisj3b.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 8 | lsmdisj3b.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 9 | 1, 8 | lsmcom2 19673 | . . . . . 6 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| 10 | 4, 3, 7, 9 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| 11 | 10 | ineq2d 4220 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = (𝑆 ∩ (𝑈 ⊕ 𝑇))) |
| 12 | 11 | eqeq1d 2739 | . . 3 ⊢ (𝜑 → ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ↔ (𝑆 ∩ (𝑈 ⊕ 𝑇)) = { 0 })) |
| 13 | incom 4209 | . . . . 5 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇)) |
| 15 | 14 | eqeq1d 2739 | . . 3 ⊢ (𝜑 → ((𝑇 ∩ 𝑈) = { 0 } ↔ (𝑈 ∩ 𝑇) = { 0 })) |
| 16 | 12, 15 | anbi12d 632 | . 2 ⊢ (𝜑 → (((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑈 ⊕ 𝑇)) = { 0 } ∧ (𝑈 ∩ 𝑇) = { 0 }))) |
| 17 | 6, 16 | bitr4d 282 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 {csn 4626 ‘cfv 6561 (class class class)co 7431 0gc0g 17484 SubGrpcsubg 19138 Cntzccntz 19333 LSSumclsm 19652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-subg 19141 df-cntz 19335 df-oppg 19364 df-lsm 19654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |