Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gg-cnfld1 Structured version   Visualization version   GIF version

Theorem gg-cnfld1 35500
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Use mpocnfldmul 35490. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
gg-cnfld1 1 = (1r‘ℂfld)

Proof of Theorem gg-cnfld1
Dummy variables 𝑣 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11174 . . . 4 1 ∈ ℂ
2 mullid 11220 . . . . . . 7 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
3 1cnd 11216 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 1 ∈ ℂ)
43ancri 549 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 ∈ ℂ ∧ 𝑥 ∈ ℂ))
5 ovmpot 7572 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥))
65eqcomd 2737 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
74, 6syl 17 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
87eqeq1d 2733 . . . . . . . 8 (𝑥 ∈ ℂ → ((1 · 𝑥) = 𝑥 ↔ (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥))
98biimpd 228 . . . . . . 7 (𝑥 ∈ ℂ → ((1 · 𝑥) = 𝑥 → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥))
102, 9mpd 15 . . . . . 6 (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥)
11 mulrid 11219 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
123ancli 548 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (𝑥 ∈ ℂ ∧ 1 ∈ ℂ))
13 ovmpot 7572 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
1412, 13syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
1514eqcomd 2737 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 · 1) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1))
1615eqeq1d 2733 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥 · 1) = 𝑥 ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
1716biimpd 228 . . . . . . 7 (𝑥 ∈ ℂ → ((𝑥 · 1) = 𝑥 → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
1811, 17mpd 15 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
1910, 18jca 511 . . . . 5 (𝑥 ∈ ℂ → ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
2019rgen 3062 . . . 4 𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
211, 20pm3.2i 470 . . 3 (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
22 cnring 21171 . . . 4 fld ∈ Ring
23 cnfldbas 21152 . . . . 5 ℂ = (Base‘ℂfld)
24 mpocnfldmul 35490 . . . . 5 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
25 eqid 2731 . . . . 5 (1r‘ℂfld) = (1r‘ℂfld)
2623, 24, 25isringid 20163 . . . 4 (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1))
2722, 26ax-mp 5 . . 3 ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1)
2821, 27mpbi 229 . 2 (1r‘ℂfld) = 1
2928eqcomi 2740 1 1 = (1r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  cfv 6543  (class class class)co 7412  cmpo 7414  cc 11114  1c1 11117   · cmul 11121  1rcur 20079  Ringcrg 20131  fldccnfld 21148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-starv 17219  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-0g 17394  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-grp 18861  df-cmn 19695  df-mgp 20033  df-ur 20080  df-ring 20133  df-cring 20134  df-cnfld 21149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator