Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natoppf Structured version   Visualization version   GIF version

Theorem natoppf 49390
Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
natoppf.o 𝑂 = (oppCat‘𝐶)
natoppf.p 𝑃 = (oppCat‘𝐷)
natoppf.n 𝑁 = (𝐶 Nat 𝐷)
natoppf.m 𝑀 = (𝑂 Nat 𝑃)
natoppf.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
Assertion
Ref Expression
natoppf (𝜑𝐴 ∈ (⟨𝐾, tpos 𝐿𝑀𝐹, tpos 𝐺⟩))

Proof of Theorem natoppf
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natoppf.m . 2 𝑀 = (𝑂 Nat 𝑃)
2 natoppf.o . . 3 𝑂 = (oppCat‘𝐶)
3 eqid 2733 . . 3 (Base‘𝐶) = (Base‘𝐶)
42, 3oppcbas 17632 . 2 (Base‘𝐶) = (Base‘𝑂)
5 eqid 2733 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
6 eqid 2733 . 2 (Hom ‘𝑃) = (Hom ‘𝑃)
7 eqid 2733 . 2 (comp‘𝑃) = (comp‘𝑃)
8 natoppf.p . . 3 𝑃 = (oppCat‘𝐷)
9 natoppf.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
10 natoppf.a . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
119, 10natrcl3 49386 . . 3 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
122, 8, 11funcoppc 17790 . 2 (𝜑𝐾(𝑂 Func 𝑃)tpos 𝐿)
139, 10natrcl2 49385 . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
142, 8, 13funcoppc 17790 . 2 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
159, 10, 3natfn 17872 . 2 (𝜑𝐴 Fn (Base‘𝐶))
1610adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
17 eqid 2733 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
18 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
199, 16, 3, 17, 18natcl 17871 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)))
2017, 8oppchom 17629 . . 3 ((𝐾𝑥)(Hom ‘𝑃)(𝐹𝑥)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥))
2119, 20eleqtrrdi 2844 . 2 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐾𝑥)(Hom ‘𝑃)(𝐹𝑥)))
2210ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
23 eqid 2733 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
24 eqid 2733 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
25 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑦 ∈ (Base‘𝐶))
26 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑥 ∈ (Base‘𝐶))
27 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦))
2823, 2oppchom 17629 . . . . . 6 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
2927, 28eleqtrdi 2843 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑚 ∈ (𝑦(Hom ‘𝐶)𝑥))
309, 22, 3, 23, 24, 25, 26, 29nati 17873 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑥)(⟨(𝐹𝑦), (𝐹𝑥)⟩(comp‘𝐷)(𝐾𝑥))((𝑦𝐺𝑥)‘𝑚)) = (((𝑦𝐿𝑥)‘𝑚)(⟨(𝐹𝑦), (𝐾𝑦)⟩(comp‘𝐷)(𝐾𝑥))(𝐴𝑦)))
31 eqid 2733 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
323, 31, 11funcf1 17781 . . . . . . 7 (𝜑𝐾:(Base‘𝐶)⟶(Base‘𝐷))
3332ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐾:(Base‘𝐶)⟶(Base‘𝐷))
3433, 26ffvelcdmd 7027 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐾𝑥) ∈ (Base‘𝐷))
353, 31, 13funcf1 17781 . . . . . . 7 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
3635ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
3736, 26ffvelcdmd 7027 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐹𝑥) ∈ (Base‘𝐷))
3836, 25ffvelcdmd 7027 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐹𝑦) ∈ (Base‘𝐷))
3931, 24, 8, 34, 37, 38oppcco 17631 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (((𝑦𝐺𝑥)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)) = ((𝐴𝑥)(⟨(𝐹𝑦), (𝐹𝑥)⟩(comp‘𝐷)(𝐾𝑥))((𝑦𝐺𝑥)‘𝑚)))
4033, 25ffvelcdmd 7027 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐾𝑦) ∈ (Base‘𝐷))
4131, 24, 8, 34, 40, 38oppcco 17631 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑦𝐿𝑥)‘𝑚)) = (((𝑦𝐿𝑥)‘𝑚)(⟨(𝐹𝑦), (𝐾𝑦)⟩(comp‘𝐷)(𝐾𝑥))(𝐴𝑦)))
4230, 39, 413eqtr4rd 2779 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑦𝐿𝑥)‘𝑚)) = (((𝑦𝐺𝑥)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)))
43 ovtpos 8180 . . . . 5 (𝑥tpos 𝐿𝑦) = (𝑦𝐿𝑥)
4443fveq1i 6832 . . . 4 ((𝑥tpos 𝐿𝑦)‘𝑚) = ((𝑦𝐿𝑥)‘𝑚)
4544oveq2i 7366 . . 3 ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑥tpos 𝐿𝑦)‘𝑚)) = ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑦𝐿𝑥)‘𝑚))
46 ovtpos 8180 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
4746fveq1i 6832 . . . 4 ((𝑥tpos 𝐺𝑦)‘𝑚) = ((𝑦𝐺𝑥)‘𝑚)
4847oveq1i 7365 . . 3 (((𝑥tpos 𝐺𝑦)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)) = (((𝑦𝐺𝑥)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥))
4942, 45, 483eqtr4g 2793 . 2 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑥tpos 𝐿𝑦)‘𝑚)) = (((𝑥tpos 𝐺𝑦)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)))
501, 4, 5, 6, 7, 12, 14, 15, 21, 49isnatd 49384 1 (𝜑𝐴 ∈ (⟨𝐾, tpos 𝐿𝑀𝐹, tpos 𝐺⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583  wf 6485  cfv 6489  (class class class)co 7355  tpos ctpos 8164  Basecbs 17127  Hom chom 17179  compcco 17180  oppCatcoppc 17625   Nat cnat 17859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-oppc 17626  df-func 17773  df-nat 17861
This theorem is referenced by:  natoppf2  49391
  Copyright terms: Public domain W3C validator