Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natoppf Structured version   Visualization version   GIF version

Theorem natoppf 49200
Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
natoppf.o 𝑂 = (oppCat‘𝐶)
natoppf.p 𝑃 = (oppCat‘𝐷)
natoppf.n 𝑁 = (𝐶 Nat 𝐷)
natoppf.m 𝑀 = (𝑂 Nat 𝑃)
natoppf.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
Assertion
Ref Expression
natoppf (𝜑𝐴 ∈ (⟨𝐾, tpos 𝐿𝑀𝐹, tpos 𝐺⟩))

Proof of Theorem natoppf
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natoppf.m . 2 𝑀 = (𝑂 Nat 𝑃)
2 natoppf.o . . 3 𝑂 = (oppCat‘𝐶)
3 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
42, 3oppcbas 17685 . 2 (Base‘𝐶) = (Base‘𝑂)
5 eqid 2730 . 2 (Hom ‘𝑂) = (Hom ‘𝑂)
6 eqid 2730 . 2 (Hom ‘𝑃) = (Hom ‘𝑃)
7 eqid 2730 . 2 (comp‘𝑃) = (comp‘𝑃)
8 natoppf.p . . 3 𝑃 = (oppCat‘𝐷)
9 natoppf.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
10 natoppf.a . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
119, 10natrcl3 49196 . . 3 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
122, 8, 11funcoppc 17843 . 2 (𝜑𝐾(𝑂 Func 𝑃)tpos 𝐿)
139, 10natrcl2 49195 . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
142, 8, 13funcoppc 17843 . 2 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
159, 10, 3natfn 17925 . 2 (𝜑𝐴 Fn (Base‘𝐶))
1610adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
17 eqid 2730 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
18 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
199, 16, 3, 17, 18natcl 17924 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)))
2017, 8oppchom 17682 . . 3 ((𝐾𝑥)(Hom ‘𝑃)(𝐹𝑥)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥))
2119, 20eleqtrrdi 2840 . 2 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐾𝑥)(Hom ‘𝑃)(𝐹𝑥)))
2210ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
23 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
24 eqid 2730 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
25 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑦 ∈ (Base‘𝐶))
26 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑥 ∈ (Base‘𝐶))
27 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦))
2823, 2oppchom 17682 . . . . . 6 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
2927, 28eleqtrdi 2839 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑚 ∈ (𝑦(Hom ‘𝐶)𝑥))
309, 22, 3, 23, 24, 25, 26, 29nati 17926 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑥)(⟨(𝐹𝑦), (𝐹𝑥)⟩(comp‘𝐷)(𝐾𝑥))((𝑦𝐺𝑥)‘𝑚)) = (((𝑦𝐿𝑥)‘𝑚)(⟨(𝐹𝑦), (𝐾𝑦)⟩(comp‘𝐷)(𝐾𝑥))(𝐴𝑦)))
31 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
323, 31, 11funcf1 17834 . . . . . . 7 (𝜑𝐾:(Base‘𝐶)⟶(Base‘𝐷))
3332ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐾:(Base‘𝐶)⟶(Base‘𝐷))
3433, 26ffvelcdmd 7059 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐾𝑥) ∈ (Base‘𝐷))
353, 31, 13funcf1 17834 . . . . . . 7 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
3635ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
3736, 26ffvelcdmd 7059 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐹𝑥) ∈ (Base‘𝐷))
3836, 25ffvelcdmd 7059 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐹𝑦) ∈ (Base‘𝐷))
3931, 24, 8, 34, 37, 38oppcco 17684 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (((𝑦𝐺𝑥)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)) = ((𝐴𝑥)(⟨(𝐹𝑦), (𝐹𝑥)⟩(comp‘𝐷)(𝐾𝑥))((𝑦𝐺𝑥)‘𝑚)))
4033, 25ffvelcdmd 7059 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐾𝑦) ∈ (Base‘𝐷))
4131, 24, 8, 34, 40, 38oppcco 17684 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑦𝐿𝑥)‘𝑚)) = (((𝑦𝐿𝑥)‘𝑚)(⟨(𝐹𝑦), (𝐾𝑦)⟩(comp‘𝐷)(𝐾𝑥))(𝐴𝑦)))
4230, 39, 413eqtr4rd 2776 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑦𝐿𝑥)‘𝑚)) = (((𝑦𝐺𝑥)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)))
43 ovtpos 8222 . . . . 5 (𝑥tpos 𝐿𝑦) = (𝑦𝐿𝑥)
4443fveq1i 6861 . . . 4 ((𝑥tpos 𝐿𝑦)‘𝑚) = ((𝑦𝐿𝑥)‘𝑚)
4544oveq2i 7400 . . 3 ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑥tpos 𝐿𝑦)‘𝑚)) = ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑦𝐿𝑥)‘𝑚))
46 ovtpos 8222 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
4746fveq1i 6861 . . . 4 ((𝑥tpos 𝐺𝑦)‘𝑚) = ((𝑦𝐺𝑥)‘𝑚)
4847oveq1i 7399 . . 3 (((𝑥tpos 𝐺𝑦)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)) = (((𝑦𝐺𝑥)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥))
4942, 45, 483eqtr4g 2790 . 2 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴𝑦)(⟨(𝐾𝑥), (𝐾𝑦)⟩(comp‘𝑃)(𝐹𝑦))((𝑥tpos 𝐿𝑦)‘𝑚)) = (((𝑥tpos 𝐺𝑦)‘𝑚)(⟨(𝐾𝑥), (𝐹𝑥)⟩(comp‘𝑃)(𝐹𝑦))(𝐴𝑥)))
501, 4, 5, 6, 7, 12, 14, 15, 21, 49isnatd 49194 1 (𝜑𝐴 ∈ (⟨𝐾, tpos 𝐿𝑀𝐹, tpos 𝐺⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597  wf 6509  cfv 6513  (class class class)co 7389  tpos ctpos 8206  Basecbs 17185  Hom chom 17237  compcco 17238  oppCatcoppc 17678   Nat cnat 17912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-oppc 17679  df-func 17826  df-nat 17914
This theorem is referenced by:  natoppf2  49201
  Copyright terms: Public domain W3C validator