| Step | Hyp | Ref
| Expression |
| 1 | | natoppf.m |
. 2
⊢ 𝑀 = (𝑂 Nat 𝑃) |
| 2 | | natoppf.o |
. . 3
⊢ 𝑂 = (oppCat‘𝐶) |
| 3 | | eqid 2730 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 4 | 2, 3 | oppcbas 17685 |
. 2
⊢
(Base‘𝐶) =
(Base‘𝑂) |
| 5 | | eqid 2730 |
. 2
⊢ (Hom
‘𝑂) = (Hom
‘𝑂) |
| 6 | | eqid 2730 |
. 2
⊢ (Hom
‘𝑃) = (Hom
‘𝑃) |
| 7 | | eqid 2730 |
. 2
⊢
(comp‘𝑃) =
(comp‘𝑃) |
| 8 | | natoppf.p |
. . 3
⊢ 𝑃 = (oppCat‘𝐷) |
| 9 | | natoppf.n |
. . . 4
⊢ 𝑁 = (𝐶 Nat 𝐷) |
| 10 | | natoppf.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| 11 | 9, 10 | natrcl3 49196 |
. . 3
⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
| 12 | 2, 8, 11 | funcoppc 17843 |
. 2
⊢ (𝜑 → 𝐾(𝑂 Func 𝑃)tpos 𝐿) |
| 13 | 9, 10 | natrcl2 49195 |
. . 3
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 14 | 2, 8, 13 | funcoppc 17843 |
. 2
⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
| 15 | 9, 10, 3 | natfn 17925 |
. 2
⊢ (𝜑 → 𝐴 Fn (Base‘𝐶)) |
| 16 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| 17 | | eqid 2730 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 18 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 19 | 9, 16, 3, 17, 18 | natcl 17924 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥))) |
| 20 | 17, 8 | oppchom 17682 |
. . 3
⊢ ((𝐾‘𝑥)(Hom ‘𝑃)(𝐹‘𝑥)) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐾‘𝑥)) |
| 21 | 19, 20 | eleqtrrdi 2840 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐴‘𝑥) ∈ ((𝐾‘𝑥)(Hom ‘𝑃)(𝐹‘𝑥))) |
| 22 | 10 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| 23 | | eqid 2730 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 24 | | eqid 2730 |
. . . . 5
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 25 | | simplrr 777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
| 26 | | simplrl 776 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
| 27 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) |
| 28 | 23, 2 | oppchom 17682 |
. . . . . 6
⊢ (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥) |
| 29 | 27, 28 | eleqtrdi 2839 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝑚 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
| 30 | 9, 22, 3, 23, 24, 25, 26, 29 | nati 17926 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴‘𝑥)(〈(𝐹‘𝑦), (𝐹‘𝑥)〉(comp‘𝐷)(𝐾‘𝑥))((𝑦𝐺𝑥)‘𝑚)) = (((𝑦𝐿𝑥)‘𝑚)(〈(𝐹‘𝑦), (𝐾‘𝑦)〉(comp‘𝐷)(𝐾‘𝑥))(𝐴‘𝑦))) |
| 31 | | eqid 2730 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 32 | 3, 31, 11 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → 𝐾:(Base‘𝐶)⟶(Base‘𝐷)) |
| 33 | 32 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐾:(Base‘𝐶)⟶(Base‘𝐷)) |
| 34 | 33, 26 | ffvelcdmd 7059 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐾‘𝑥) ∈ (Base‘𝐷)) |
| 35 | 3, 31, 13 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 36 | 35 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 37 | 36, 26 | ffvelcdmd 7059 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 38 | 36, 25 | ffvelcdmd 7059 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 39 | 31, 24, 8, 34, 37, 38 | oppcco 17684 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (((𝑦𝐺𝑥)‘𝑚)(〈(𝐾‘𝑥), (𝐹‘𝑥)〉(comp‘𝑃)(𝐹‘𝑦))(𝐴‘𝑥)) = ((𝐴‘𝑥)(〈(𝐹‘𝑦), (𝐹‘𝑥)〉(comp‘𝐷)(𝐾‘𝑥))((𝑦𝐺𝑥)‘𝑚))) |
| 40 | 33, 25 | ffvelcdmd 7059 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → (𝐾‘𝑦) ∈ (Base‘𝐷)) |
| 41 | 31, 24, 8, 34, 40, 38 | oppcco 17684 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴‘𝑦)(〈(𝐾‘𝑥), (𝐾‘𝑦)〉(comp‘𝑃)(𝐹‘𝑦))((𝑦𝐿𝑥)‘𝑚)) = (((𝑦𝐿𝑥)‘𝑚)(〈(𝐹‘𝑦), (𝐾‘𝑦)〉(comp‘𝐷)(𝐾‘𝑥))(𝐴‘𝑦))) |
| 42 | 30, 39, 41 | 3eqtr4rd 2776 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴‘𝑦)(〈(𝐾‘𝑥), (𝐾‘𝑦)〉(comp‘𝑃)(𝐹‘𝑦))((𝑦𝐿𝑥)‘𝑚)) = (((𝑦𝐺𝑥)‘𝑚)(〈(𝐾‘𝑥), (𝐹‘𝑥)〉(comp‘𝑃)(𝐹‘𝑦))(𝐴‘𝑥))) |
| 43 | | ovtpos 8222 |
. . . . 5
⊢ (𝑥tpos 𝐿𝑦) = (𝑦𝐿𝑥) |
| 44 | 43 | fveq1i 6861 |
. . . 4
⊢ ((𝑥tpos 𝐿𝑦)‘𝑚) = ((𝑦𝐿𝑥)‘𝑚) |
| 45 | 44 | oveq2i 7400 |
. . 3
⊢ ((𝐴‘𝑦)(〈(𝐾‘𝑥), (𝐾‘𝑦)〉(comp‘𝑃)(𝐹‘𝑦))((𝑥tpos 𝐿𝑦)‘𝑚)) = ((𝐴‘𝑦)(〈(𝐾‘𝑥), (𝐾‘𝑦)〉(comp‘𝑃)(𝐹‘𝑦))((𝑦𝐿𝑥)‘𝑚)) |
| 46 | | ovtpos 8222 |
. . . . 5
⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) |
| 47 | 46 | fveq1i 6861 |
. . . 4
⊢ ((𝑥tpos 𝐺𝑦)‘𝑚) = ((𝑦𝐺𝑥)‘𝑚) |
| 48 | 47 | oveq1i 7399 |
. . 3
⊢ (((𝑥tpos 𝐺𝑦)‘𝑚)(〈(𝐾‘𝑥), (𝐹‘𝑥)〉(comp‘𝑃)(𝐹‘𝑦))(𝐴‘𝑥)) = (((𝑦𝐺𝑥)‘𝑚)(〈(𝐾‘𝑥), (𝐹‘𝑥)〉(comp‘𝑃)(𝐹‘𝑦))(𝐴‘𝑥)) |
| 49 | 42, 45, 48 | 3eqtr4g 2790 |
. 2
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑚 ∈ (𝑥(Hom ‘𝑂)𝑦)) → ((𝐴‘𝑦)(〈(𝐾‘𝑥), (𝐾‘𝑦)〉(comp‘𝑃)(𝐹‘𝑦))((𝑥tpos 𝐿𝑦)‘𝑚)) = (((𝑥tpos 𝐺𝑦)‘𝑚)(〈(𝐾‘𝑥), (𝐹‘𝑥)〉(comp‘𝑃)(𝐹‘𝑦))(𝐴‘𝑥))) |
| 50 | 1, 4, 5, 6, 7, 12,
14, 15, 21, 49 | isnatd 49194 |
1
⊢ (𝜑 → 𝐴 ∈ (〈𝐾, tpos 𝐿〉𝑀〈𝐹, tpos 𝐺〉)) |