MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumltss Structured version   Visualization version   GIF version

Theorem isumltss 15796
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
isumltss.1 𝑍 = (ℤ𝑀)
isumltss.2 (𝜑𝑀 ∈ ℤ)
isumltss.3 (𝜑𝐴 ∈ Fin)
isumltss.4 (𝜑𝐴𝑍)
isumltss.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumltss.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
isumltss.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumltss (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumltss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isumltss.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 isumltss.1 . . . . . 6 𝑍 = (ℤ𝑀)
32uzinf 13932 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin)
41, 3syl 17 . . . 4 (𝜑 → ¬ 𝑍 ∈ Fin)
5 ssdif0 4363 . . . . 5 (𝑍𝐴 ↔ (𝑍𝐴) = ∅)
6 isumltss.4 . . . . . 6 (𝜑𝐴𝑍)
7 eqss 3997 . . . . . . 7 (𝐴 = 𝑍 ↔ (𝐴𝑍𝑍𝐴))
8 isumltss.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
9 eleq1 2821 . . . . . . . 8 (𝐴 = 𝑍 → (𝐴 ∈ Fin ↔ 𝑍 ∈ Fin))
108, 9syl5ibcom 244 . . . . . . 7 (𝜑 → (𝐴 = 𝑍𝑍 ∈ Fin))
117, 10biimtrrid 242 . . . . . 6 (𝜑 → ((𝐴𝑍𝑍𝐴) → 𝑍 ∈ Fin))
126, 11mpand 693 . . . . 5 (𝜑 → (𝑍𝐴𝑍 ∈ Fin))
135, 12biimtrrid 242 . . . 4 (𝜑 → ((𝑍𝐴) = ∅ → 𝑍 ∈ Fin))
144, 13mtod 197 . . 3 (𝜑 → ¬ (𝑍𝐴) = ∅)
15 neq0 4345 . . 3 (¬ (𝑍𝐴) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝐴))
1614, 15sylib 217 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑍𝐴))
178adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴 ∈ Fin)
186adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴𝑍)
1918sselda 3982 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝑘𝑍)
20 isumltss.6 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
2120adantlr 713 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ+)
2221rpred 13018 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ)
2319, 22syldan 591 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
2417, 23fsumrecl 15682 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 ∈ ℝ)
25 snfi 9046 . . . . 5 {𝑥} ∈ Fin
26 unfi 9174 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝐴 ∪ {𝑥}) ∈ Fin)
2717, 25, 26sylancl 586 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ∈ Fin)
28 eldifi 4126 . . . . . . . . 9 (𝑥 ∈ (𝑍𝐴) → 𝑥𝑍)
2928snssd 4812 . . . . . . . 8 (𝑥 ∈ (𝑍𝐴) → {𝑥} ⊆ 𝑍)
306, 29anim12i 613 . . . . . . 7 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴𝑍 ∧ {𝑥} ⊆ 𝑍))
31 unss 4184 . . . . . . 7 ((𝐴𝑍 ∧ {𝑥} ⊆ 𝑍) ↔ (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3230, 31sylib 217 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3332sselda 3982 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝑘𝑍)
3433, 22syldan 591 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℝ)
3527, 34fsumrecl 15682 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ∈ ℝ)
361adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝑀 ∈ ℤ)
37 isumltss.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
3837adantlr 713 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → (𝐹𝑘) = 𝐵)
39 isumltss.7 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4039adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
412, 36, 38, 22, 40isumrecl 15713 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝑍 𝐵 ∈ ℝ)
4225a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ∈ Fin)
43 vex 3478 . . . . . . . 8 𝑥 ∈ V
4443snnz 4780 . . . . . . 7 {𝑥} ≠ ∅
4544a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ≠ ∅)
4629adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ⊆ 𝑍)
4746sselda 3982 . . . . . . 7 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝑘𝑍)
4847, 21syldan 591 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝐵 ∈ ℝ+)
4942, 45, 48fsumrpcl 15685 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ {𝑥}𝐵 ∈ ℝ+)
5024, 49ltaddrpd 13051 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
51 eldifn 4127 . . . . . . 7 (𝑥 ∈ (𝑍𝐴) → ¬ 𝑥𝐴)
5251adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → ¬ 𝑥𝐴)
53 disjsn 4715 . . . . . 6 ((𝐴 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝐴)
5452, 53sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∩ {𝑥}) = ∅)
55 eqidd 2733 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) = (𝐴 ∪ {𝑥}))
5621rpcnd 13020 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
5733, 56syldan 591 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℂ)
5854, 55, 27, 57fsumsplit 15689 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
5950, 58breqtrrd 5176 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵)
6021rpge0d 13022 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 0 ≤ 𝐵)
612, 36, 27, 32, 38, 22, 60, 40isumless 15793 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ≤ Σ𝑘𝑍 𝐵)
6224, 35, 41, 59, 61ltletrd 11376 . 2 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
6316, 62exlimddv 1938 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7411  Fincfn 8941  cc 11110  cr 11111   + caddc 11115   < clt 11250  cz 12560  cuz 12824  +crp 12976  seqcseq 13968  cli 15430  Σcsu 15634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-fzo 13630  df-fl 13759  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-rlim 15435  df-sum 15635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator