MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumltss Structured version   Visualization version   GIF version

Theorem isumltss 15896
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
isumltss.1 𝑍 = (ℤ𝑀)
isumltss.2 (𝜑𝑀 ∈ ℤ)
isumltss.3 (𝜑𝐴 ∈ Fin)
isumltss.4 (𝜑𝐴𝑍)
isumltss.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumltss.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
isumltss.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumltss (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumltss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isumltss.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 isumltss.1 . . . . . 6 𝑍 = (ℤ𝑀)
32uzinf 14016 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin)
41, 3syl 17 . . . 4 (𝜑 → ¬ 𝑍 ∈ Fin)
5 ssdif0 4389 . . . . 5 (𝑍𝐴 ↔ (𝑍𝐴) = ∅)
6 isumltss.4 . . . . . 6 (𝜑𝐴𝑍)
7 eqss 4024 . . . . . . 7 (𝐴 = 𝑍 ↔ (𝐴𝑍𝑍𝐴))
8 isumltss.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
9 eleq1 2832 . . . . . . . 8 (𝐴 = 𝑍 → (𝐴 ∈ Fin ↔ 𝑍 ∈ Fin))
108, 9syl5ibcom 245 . . . . . . 7 (𝜑 → (𝐴 = 𝑍𝑍 ∈ Fin))
117, 10biimtrrid 243 . . . . . 6 (𝜑 → ((𝐴𝑍𝑍𝐴) → 𝑍 ∈ Fin))
126, 11mpand 694 . . . . 5 (𝜑 → (𝑍𝐴𝑍 ∈ Fin))
135, 12biimtrrid 243 . . . 4 (𝜑 → ((𝑍𝐴) = ∅ → 𝑍 ∈ Fin))
144, 13mtod 198 . . 3 (𝜑 → ¬ (𝑍𝐴) = ∅)
15 neq0 4375 . . 3 (¬ (𝑍𝐴) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝐴))
1614, 15sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑍𝐴))
178adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴 ∈ Fin)
186adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴𝑍)
1918sselda 4008 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝑘𝑍)
20 isumltss.6 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
2120adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ+)
2221rpred 13099 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ)
2319, 22syldan 590 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
2417, 23fsumrecl 15782 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 ∈ ℝ)
25 snfi 9109 . . . . 5 {𝑥} ∈ Fin
26 unfi 9238 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝐴 ∪ {𝑥}) ∈ Fin)
2717, 25, 26sylancl 585 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ∈ Fin)
28 eldifi 4154 . . . . . . . . 9 (𝑥 ∈ (𝑍𝐴) → 𝑥𝑍)
2928snssd 4834 . . . . . . . 8 (𝑥 ∈ (𝑍𝐴) → {𝑥} ⊆ 𝑍)
306, 29anim12i 612 . . . . . . 7 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴𝑍 ∧ {𝑥} ⊆ 𝑍))
31 unss 4213 . . . . . . 7 ((𝐴𝑍 ∧ {𝑥} ⊆ 𝑍) ↔ (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3230, 31sylib 218 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3332sselda 4008 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝑘𝑍)
3433, 22syldan 590 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℝ)
3527, 34fsumrecl 15782 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ∈ ℝ)
361adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝑀 ∈ ℤ)
37 isumltss.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
3837adantlr 714 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → (𝐹𝑘) = 𝐵)
39 isumltss.7 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4039adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
412, 36, 38, 22, 40isumrecl 15813 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝑍 𝐵 ∈ ℝ)
4225a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ∈ Fin)
43 vex 3492 . . . . . . . 8 𝑥 ∈ V
4443snnz 4801 . . . . . . 7 {𝑥} ≠ ∅
4544a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ≠ ∅)
4629adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ⊆ 𝑍)
4746sselda 4008 . . . . . . 7 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝑘𝑍)
4847, 21syldan 590 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝐵 ∈ ℝ+)
4942, 45, 48fsumrpcl 15785 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ {𝑥}𝐵 ∈ ℝ+)
5024, 49ltaddrpd 13132 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
51 eldifn 4155 . . . . . . 7 (𝑥 ∈ (𝑍𝐴) → ¬ 𝑥𝐴)
5251adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → ¬ 𝑥𝐴)
53 disjsn 4736 . . . . . 6 ((𝐴 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝐴)
5452, 53sylibr 234 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∩ {𝑥}) = ∅)
55 eqidd 2741 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) = (𝐴 ∪ {𝑥}))
5621rpcnd 13101 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
5733, 56syldan 590 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℂ)
5854, 55, 27, 57fsumsplit 15789 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
5950, 58breqtrrd 5194 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵)
6021rpge0d 13103 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 0 ≤ 𝐵)
612, 36, 27, 32, 38, 22, 60, 40isumless 15893 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ≤ Σ𝑘𝑍 𝐵)
6224, 35, 41, 59, 61ltletrd 11450 . 2 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
6316, 62exlimddv 1934 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183   + caddc 11187   < clt 11324  cz 12639  cuz 12903  +crp 13057  seqcseq 14052  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator