MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumltss Structured version   Visualization version   GIF version

Theorem isumltss 14805
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
isumltss.1 𝑍 = (ℤ𝑀)
isumltss.2 (𝜑𝑀 ∈ ℤ)
isumltss.3 (𝜑𝐴 ∈ Fin)
isumltss.4 (𝜑𝐴𝑍)
isumltss.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumltss.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
isumltss.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumltss (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumltss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isumltss.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 isumltss.1 . . . . . 6 𝑍 = (ℤ𝑀)
32uzinf 12991 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin)
41, 3syl 17 . . . 4 (𝜑 → ¬ 𝑍 ∈ Fin)
5 ssdif0 4150 . . . . 5 (𝑍𝐴 ↔ (𝑍𝐴) = ∅)
6 isumltss.4 . . . . . 6 (𝜑𝐴𝑍)
7 eqss 3820 . . . . . . 7 (𝐴 = 𝑍 ↔ (𝐴𝑍𝑍𝐴))
8 isumltss.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
9 eleq1 2880 . . . . . . . 8 (𝐴 = 𝑍 → (𝐴 ∈ Fin ↔ 𝑍 ∈ Fin))
108, 9syl5ibcom 236 . . . . . . 7 (𝜑 → (𝐴 = 𝑍𝑍 ∈ Fin))
117, 10syl5bir 234 . . . . . 6 (𝜑 → ((𝐴𝑍𝑍𝐴) → 𝑍 ∈ Fin))
126, 11mpand 678 . . . . 5 (𝜑 → (𝑍𝐴𝑍 ∈ Fin))
135, 12syl5bir 234 . . . 4 (𝜑 → ((𝑍𝐴) = ∅ → 𝑍 ∈ Fin))
144, 13mtod 189 . . 3 (𝜑 → ¬ (𝑍𝐴) = ∅)
15 neq0 4138 . . 3 (¬ (𝑍𝐴) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝐴))
1614, 15sylib 209 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑍𝐴))
178adantr 468 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴 ∈ Fin)
186adantr 468 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴𝑍)
1918sselda 3805 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝑘𝑍)
20 isumltss.6 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
2120adantlr 697 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ+)
2221rpred 12089 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ)
2319, 22syldan 581 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
2417, 23fsumrecl 14691 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 ∈ ℝ)
25 snfi 8280 . . . . 5 {𝑥} ∈ Fin
26 unfi 8469 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝐴 ∪ {𝑥}) ∈ Fin)
2717, 25, 26sylancl 576 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ∈ Fin)
28 eldifi 3938 . . . . . . . . 9 (𝑥 ∈ (𝑍𝐴) → 𝑥𝑍)
2928snssd 4537 . . . . . . . 8 (𝑥 ∈ (𝑍𝐴) → {𝑥} ⊆ 𝑍)
306, 29anim12i 602 . . . . . . 7 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴𝑍 ∧ {𝑥} ⊆ 𝑍))
31 unss 3993 . . . . . . 7 ((𝐴𝑍 ∧ {𝑥} ⊆ 𝑍) ↔ (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3230, 31sylib 209 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3332sselda 3805 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝑘𝑍)
3433, 22syldan 581 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℝ)
3527, 34fsumrecl 14691 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ∈ ℝ)
361adantr 468 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝑀 ∈ ℤ)
37 isumltss.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
3837adantlr 697 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → (𝐹𝑘) = 𝐵)
39 isumltss.7 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4039adantr 468 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
412, 36, 38, 22, 40isumrecl 14722 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝑍 𝐵 ∈ ℝ)
4225a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ∈ Fin)
43 vex 3401 . . . . . . . 8 𝑥 ∈ V
4443snnz 4506 . . . . . . 7 {𝑥} ≠ ∅
4544a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ≠ ∅)
4629adantl 469 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ⊆ 𝑍)
4746sselda 3805 . . . . . . 7 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝑘𝑍)
4847, 21syldan 581 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝐵 ∈ ℝ+)
4942, 45, 48fsumrpcl 14694 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ {𝑥}𝐵 ∈ ℝ+)
5024, 49ltaddrpd 12122 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
51 eldifn 3939 . . . . . . 7 (𝑥 ∈ (𝑍𝐴) → ¬ 𝑥𝐴)
5251adantl 469 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → ¬ 𝑥𝐴)
53 disjsn 4445 . . . . . 6 ((𝐴 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝐴)
5452, 53sylibr 225 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∩ {𝑥}) = ∅)
55 eqidd 2814 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) = (𝐴 ∪ {𝑥}))
5621rpcnd 12091 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
5733, 56syldan 581 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℂ)
5854, 55, 27, 57fsumsplit 14697 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
5950, 58breqtrrd 4879 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵)
6021rpge0d 12093 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 0 ≤ 𝐵)
612, 36, 27, 32, 38, 22, 60, 40isumless 14802 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ≤ Σ𝑘𝑍 𝐵)
6224, 35, 41, 59, 61ltletrd 10485 . 2 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
6316, 62exlimddv 2026 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wex 1859  wcel 2157  wne 2985  cdif 3773  cun 3774  cin 3775  wss 3776  c0 4123  {csn 4377   class class class wbr 4851  dom cdm 5318  cfv 6104  (class class class)co 6877  Fincfn 8195  cc 10222  cr 10223   + caddc 10227   < clt 10362  cz 11646  cuz 11907  +crp 12049  seqcseq 13027  cli 14441  Σcsu 14642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-3 11368  df-n0 11563  df-z 11647  df-uz 11908  df-rp 12050  df-fz 12553  df-fzo 12693  df-fl 12820  df-seq 13028  df-exp 13087  df-hash 13341  df-cj 14065  df-re 14066  df-im 14067  df-sqrt 14201  df-abs 14202  df-clim 14445  df-rlim 14446  df-sum 14643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator