| Step | Hyp | Ref
| Expression |
| 1 | | isumltss.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 2 | | isumltss.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 3 | 2 | uzinf 14007 |
. . . . 5
⊢ (𝑀 ∈ ℤ → ¬
𝑍 ∈
Fin) |
| 4 | 1, 3 | syl 17 |
. . . 4
⊢ (𝜑 → ¬ 𝑍 ∈ Fin) |
| 5 | | ssdif0 4365 |
. . . . 5
⊢ (𝑍 ⊆ 𝐴 ↔ (𝑍 ∖ 𝐴) = ∅) |
| 6 | | isumltss.4 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
| 7 | | eqss 3998 |
. . . . . . 7
⊢ (𝐴 = 𝑍 ↔ (𝐴 ⊆ 𝑍 ∧ 𝑍 ⊆ 𝐴)) |
| 8 | | isumltss.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 9 | | eleq1 2828 |
. . . . . . . 8
⊢ (𝐴 = 𝑍 → (𝐴 ∈ Fin ↔ 𝑍 ∈ Fin)) |
| 10 | 8, 9 | syl5ibcom 245 |
. . . . . . 7
⊢ (𝜑 → (𝐴 = 𝑍 → 𝑍 ∈ Fin)) |
| 11 | 7, 10 | biimtrrid 243 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ⊆ 𝑍 ∧ 𝑍 ⊆ 𝐴) → 𝑍 ∈ Fin)) |
| 12 | 6, 11 | mpand 695 |
. . . . 5
⊢ (𝜑 → (𝑍 ⊆ 𝐴 → 𝑍 ∈ Fin)) |
| 13 | 5, 12 | biimtrrid 243 |
. . . 4
⊢ (𝜑 → ((𝑍 ∖ 𝐴) = ∅ → 𝑍 ∈ Fin)) |
| 14 | 4, 13 | mtod 198 |
. . 3
⊢ (𝜑 → ¬ (𝑍 ∖ 𝐴) = ∅) |
| 15 | | neq0 4351 |
. . 3
⊢ (¬
(𝑍 ∖ 𝐴) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍 ∖ 𝐴)) |
| 16 | 14, 15 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝑍 ∖ 𝐴)) |
| 17 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → 𝐴 ∈ Fin) |
| 18 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → 𝐴 ⊆ 𝑍) |
| 19 | 18 | sselda 3982 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
| 20 | | isumltss.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈
ℝ+) |
| 21 | 20 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈
ℝ+) |
| 22 | 21 | rpred 13078 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 23 | 19, 22 | syldan 591 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 24 | 17, 23 | fsumrecl 15771 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
| 25 | | snfi 9084 |
. . . . 5
⊢ {𝑥} ∈ Fin |
| 26 | | unfi 9212 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝐴 ∪ {𝑥}) ∈ Fin) |
| 27 | 17, 25, 26 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → (𝐴 ∪ {𝑥}) ∈ Fin) |
| 28 | | eldifi 4130 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑍 ∖ 𝐴) → 𝑥 ∈ 𝑍) |
| 29 | 28 | snssd 4808 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑍 ∖ 𝐴) → {𝑥} ⊆ 𝑍) |
| 30 | 6, 29 | anim12i 613 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → (𝐴 ⊆ 𝑍 ∧ {𝑥} ⊆ 𝑍)) |
| 31 | | unss 4189 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑍 ∧ {𝑥} ⊆ 𝑍) ↔ (𝐴 ∪ {𝑥}) ⊆ 𝑍) |
| 32 | 30, 31 | sylib 218 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → (𝐴 ∪ {𝑥}) ⊆ 𝑍) |
| 33 | 32 | sselda 3982 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝑘 ∈ 𝑍) |
| 34 | 33, 22 | syldan 591 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℝ) |
| 35 | 27, 34 | fsumrecl 15771 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ∈ ℝ) |
| 36 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → 𝑀 ∈ ℤ) |
| 37 | | isumltss.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| 38 | 37 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| 39 | | isumltss.7 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 40 | 39 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 41 | 2, 36, 38, 22, 40 | isumrecl 15802 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ 𝑍 𝐵 ∈ ℝ) |
| 42 | 25 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → {𝑥} ∈ Fin) |
| 43 | | vex 3483 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 44 | 43 | snnz 4775 |
. . . . . . 7
⊢ {𝑥} ≠ ∅ |
| 45 | 44 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → {𝑥} ≠ ∅) |
| 46 | 29 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → {𝑥} ⊆ 𝑍) |
| 47 | 46 | sselda 3982 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝑘 ∈ 𝑍) |
| 48 | 47, 21 | syldan 591 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝐵 ∈
ℝ+) |
| 49 | 42, 45, 48 | fsumrpcl 15774 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ {𝑥}𝐵 ∈
ℝ+) |
| 50 | 24, 49 | ltaddrpd 13111 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 < (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵)) |
| 51 | | eldifn 4131 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑍 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
| 52 | 51 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 53 | | disjsn 4710 |
. . . . . 6
⊢ ((𝐴 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ 𝐴) |
| 54 | 52, 53 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → (𝐴 ∩ {𝑥}) = ∅) |
| 55 | | eqidd 2737 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → (𝐴 ∪ {𝑥}) = (𝐴 ∪ {𝑥})) |
| 56 | 21 | rpcnd 13080 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| 57 | 33, 56 | syldan 591 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℂ) |
| 58 | 54, 55, 27, 57 | fsumsplit 15778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵)) |
| 59 | 50, 58 | breqtrrd 5170 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵) |
| 60 | 21 | rpge0d 13082 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
| 61 | 2, 36, 27, 32, 38, 22, 60, 40 | isumless 15882 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| 62 | 24, 35, 41, 59, 61 | ltletrd 11422 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑍 ∖ 𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝑍 𝐵) |
| 63 | 16, 62 | exlimddv 1934 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝑍 𝐵) |