MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumltss Structured version   Visualization version   GIF version

Theorem isumltss 15885
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
isumltss.1 𝑍 = (ℤ𝑀)
isumltss.2 (𝜑𝑀 ∈ ℤ)
isumltss.3 (𝜑𝐴 ∈ Fin)
isumltss.4 (𝜑𝐴𝑍)
isumltss.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumltss.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
isumltss.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumltss (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumltss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isumltss.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 isumltss.1 . . . . . 6 𝑍 = (ℤ𝑀)
32uzinf 14007 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin)
41, 3syl 17 . . . 4 (𝜑 → ¬ 𝑍 ∈ Fin)
5 ssdif0 4365 . . . . 5 (𝑍𝐴 ↔ (𝑍𝐴) = ∅)
6 isumltss.4 . . . . . 6 (𝜑𝐴𝑍)
7 eqss 3998 . . . . . . 7 (𝐴 = 𝑍 ↔ (𝐴𝑍𝑍𝐴))
8 isumltss.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
9 eleq1 2828 . . . . . . . 8 (𝐴 = 𝑍 → (𝐴 ∈ Fin ↔ 𝑍 ∈ Fin))
108, 9syl5ibcom 245 . . . . . . 7 (𝜑 → (𝐴 = 𝑍𝑍 ∈ Fin))
117, 10biimtrrid 243 . . . . . 6 (𝜑 → ((𝐴𝑍𝑍𝐴) → 𝑍 ∈ Fin))
126, 11mpand 695 . . . . 5 (𝜑 → (𝑍𝐴𝑍 ∈ Fin))
135, 12biimtrrid 243 . . . 4 (𝜑 → ((𝑍𝐴) = ∅ → 𝑍 ∈ Fin))
144, 13mtod 198 . . 3 (𝜑 → ¬ (𝑍𝐴) = ∅)
15 neq0 4351 . . 3 (¬ (𝑍𝐴) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝐴))
1614, 15sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑍𝐴))
178adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴 ∈ Fin)
186adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴𝑍)
1918sselda 3982 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝑘𝑍)
20 isumltss.6 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
2120adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ+)
2221rpred 13078 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ)
2319, 22syldan 591 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
2417, 23fsumrecl 15771 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 ∈ ℝ)
25 snfi 9084 . . . . 5 {𝑥} ∈ Fin
26 unfi 9212 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝐴 ∪ {𝑥}) ∈ Fin)
2717, 25, 26sylancl 586 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ∈ Fin)
28 eldifi 4130 . . . . . . . . 9 (𝑥 ∈ (𝑍𝐴) → 𝑥𝑍)
2928snssd 4808 . . . . . . . 8 (𝑥 ∈ (𝑍𝐴) → {𝑥} ⊆ 𝑍)
306, 29anim12i 613 . . . . . . 7 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴𝑍 ∧ {𝑥} ⊆ 𝑍))
31 unss 4189 . . . . . . 7 ((𝐴𝑍 ∧ {𝑥} ⊆ 𝑍) ↔ (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3230, 31sylib 218 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3332sselda 3982 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝑘𝑍)
3433, 22syldan 591 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℝ)
3527, 34fsumrecl 15771 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ∈ ℝ)
361adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝑀 ∈ ℤ)
37 isumltss.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
3837adantlr 715 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → (𝐹𝑘) = 𝐵)
39 isumltss.7 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4039adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
412, 36, 38, 22, 40isumrecl 15802 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝑍 𝐵 ∈ ℝ)
4225a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ∈ Fin)
43 vex 3483 . . . . . . . 8 𝑥 ∈ V
4443snnz 4775 . . . . . . 7 {𝑥} ≠ ∅
4544a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ≠ ∅)
4629adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ⊆ 𝑍)
4746sselda 3982 . . . . . . 7 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝑘𝑍)
4847, 21syldan 591 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝐵 ∈ ℝ+)
4942, 45, 48fsumrpcl 15774 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ {𝑥}𝐵 ∈ ℝ+)
5024, 49ltaddrpd 13111 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
51 eldifn 4131 . . . . . . 7 (𝑥 ∈ (𝑍𝐴) → ¬ 𝑥𝐴)
5251adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → ¬ 𝑥𝐴)
53 disjsn 4710 . . . . . 6 ((𝐴 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝐴)
5452, 53sylibr 234 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∩ {𝑥}) = ∅)
55 eqidd 2737 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) = (𝐴 ∪ {𝑥}))
5621rpcnd 13080 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
5733, 56syldan 591 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℂ)
5854, 55, 27, 57fsumsplit 15778 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
5950, 58breqtrrd 5170 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵)
6021rpge0d 13082 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 0 ≤ 𝐵)
612, 36, 27, 32, 38, 22, 60, 40isumless 15882 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ≤ Σ𝑘𝑍 𝐵)
6224, 35, 41, 59, 61ltletrd 11422 . 2 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
6316, 62exlimddv 1934 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332  {csn 4625   class class class wbr 5142  dom cdm 5684  cfv 6560  (class class class)co 7432  Fincfn 8986  cc 11154  cr 11155   + caddc 11159   < clt 11296  cz 12615  cuz 12879  +crp 13035  seqcseq 14043  cli 15521  Σcsu 15723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator