MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumltss Structured version   Visualization version   GIF version

Theorem isumltss 15687
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
isumltss.1 𝑍 = (ℤ𝑀)
isumltss.2 (𝜑𝑀 ∈ ℤ)
isumltss.3 (𝜑𝐴 ∈ Fin)
isumltss.4 (𝜑𝐴𝑍)
isumltss.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isumltss.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
isumltss.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumltss (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isumltss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isumltss.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 isumltss.1 . . . . . 6 𝑍 = (ℤ𝑀)
32uzinf 13824 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin)
41, 3syl 17 . . . 4 (𝜑 → ¬ 𝑍 ∈ Fin)
5 ssdif0 4321 . . . . 5 (𝑍𝐴 ↔ (𝑍𝐴) = ∅)
6 isumltss.4 . . . . . 6 (𝜑𝐴𝑍)
7 eqss 3957 . . . . . . 7 (𝐴 = 𝑍 ↔ (𝐴𝑍𝑍𝐴))
8 isumltss.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
9 eleq1 2825 . . . . . . . 8 (𝐴 = 𝑍 → (𝐴 ∈ Fin ↔ 𝑍 ∈ Fin))
108, 9syl5ibcom 244 . . . . . . 7 (𝜑 → (𝐴 = 𝑍𝑍 ∈ Fin))
117, 10biimtrrid 242 . . . . . 6 (𝜑 → ((𝐴𝑍𝑍𝐴) → 𝑍 ∈ Fin))
126, 11mpand 693 . . . . 5 (𝜑 → (𝑍𝐴𝑍 ∈ Fin))
135, 12biimtrrid 242 . . . 4 (𝜑 → ((𝑍𝐴) = ∅ → 𝑍 ∈ Fin))
144, 13mtod 197 . . 3 (𝜑 → ¬ (𝑍𝐴) = ∅)
15 neq0 4303 . . 3 (¬ (𝑍𝐴) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝐴))
1614, 15sylib 217 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑍𝐴))
178adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴 ∈ Fin)
186adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝐴𝑍)
1918sselda 3942 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝑘𝑍)
20 isumltss.6 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ+)
2120adantlr 713 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ+)
2221rpred 12911 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℝ)
2319, 22syldan 591 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
2417, 23fsumrecl 15573 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 ∈ ℝ)
25 snfi 8946 . . . . 5 {𝑥} ∈ Fin
26 unfi 9074 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin) → (𝐴 ∪ {𝑥}) ∈ Fin)
2717, 25, 26sylancl 586 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ∈ Fin)
28 eldifi 4084 . . . . . . . . 9 (𝑥 ∈ (𝑍𝐴) → 𝑥𝑍)
2928snssd 4767 . . . . . . . 8 (𝑥 ∈ (𝑍𝐴) → {𝑥} ⊆ 𝑍)
306, 29anim12i 613 . . . . . . 7 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴𝑍 ∧ {𝑥} ⊆ 𝑍))
31 unss 4142 . . . . . . 7 ((𝐴𝑍 ∧ {𝑥} ⊆ 𝑍) ↔ (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3230, 31sylib 217 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) ⊆ 𝑍)
3332sselda 3942 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝑘𝑍)
3433, 22syldan 591 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℝ)
3527, 34fsumrecl 15573 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ∈ ℝ)
361adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → 𝑀 ∈ ℤ)
37 isumltss.5 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
3837adantlr 713 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → (𝐹𝑘) = 𝐵)
39 isumltss.7 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4039adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
412, 36, 38, 22, 40isumrecl 15604 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝑍 𝐵 ∈ ℝ)
4225a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ∈ Fin)
43 vex 3447 . . . . . . . 8 𝑥 ∈ V
4443snnz 4735 . . . . . . 7 {𝑥} ≠ ∅
4544a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ≠ ∅)
4629adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑍𝐴)) → {𝑥} ⊆ 𝑍)
4746sselda 3942 . . . . . . 7 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝑘𝑍)
4847, 21syldan 591 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ {𝑥}) → 𝐵 ∈ ℝ+)
4942, 45, 48fsumrpcl 15576 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ {𝑥}𝐵 ∈ ℝ+)
5024, 49ltaddrpd 12944 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
51 eldifn 4085 . . . . . . 7 (𝑥 ∈ (𝑍𝐴) → ¬ 𝑥𝐴)
5251adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝑍𝐴)) → ¬ 𝑥𝐴)
53 disjsn 4670 . . . . . 6 ((𝐴 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝐴)
5452, 53sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∩ {𝑥}) = ∅)
55 eqidd 2737 . . . . 5 ((𝜑𝑥 ∈ (𝑍𝐴)) → (𝐴 ∪ {𝑥}) = (𝐴 ∪ {𝑥}))
5621rpcnd 12913 . . . . . 6 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
5733, 56syldan 591 . . . . 5 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘 ∈ (𝐴 ∪ {𝑥})) → 𝐵 ∈ ℂ)
5854, 55, 27, 57fsumsplit 15580 . . . 4 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑥}𝐵))
5950, 58breqtrrd 5131 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵)
6021rpge0d 12915 . . . 4 (((𝜑𝑥 ∈ (𝑍𝐴)) ∧ 𝑘𝑍) → 0 ≤ 𝐵)
612, 36, 27, 32, 38, 22, 60, 40isumless 15684 . . 3 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘 ∈ (𝐴 ∪ {𝑥})𝐵 ≤ Σ𝑘𝑍 𝐵)
6224, 35, 41, 59, 61ltletrd 11273 . 2 ((𝜑𝑥 ∈ (𝑍𝐴)) → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
6316, 62exlimddv 1938 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2941  cdif 3905  cun 3906  cin 3907  wss 3908  c0 4280  {csn 4584   class class class wbr 5103  dom cdm 5631  cfv 6493  (class class class)co 7351  Fincfn 8841  cc 11007  cr 11008   + caddc 11012   < clt 11147  cz 12457  cuz 12721  +crp 12869  seqcseq 13860  cli 15320  Σcsu 15524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-pm 8726  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-sup 9336  df-inf 9337  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-rp 12870  df-fz 13379  df-fzo 13522  df-fl 13651  df-seq 13861  df-exp 13922  df-hash 14185  df-cj 14938  df-re 14939  df-im 14940  df-sqrt 15074  df-abs 15075  df-clim 15324  df-rlim 15325  df-sum 15525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator