Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  g0wlk0 Structured version   Visualization version   GIF version

Theorem g0wlk0 27445
 Description: There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
Assertion
Ref Expression
g0wlk0 ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)

Proof of Theorem g0wlk0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 ((Walks‘𝐺) = ∅ → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅))
2 neq0 4262 . . 3 (¬ (Walks‘𝐺) = ∅ ↔ ∃𝑤 𝑤 ∈ (Walks‘𝐺))
3 wlkv0 27444 . . . . . 6 (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → ((1st𝑤) = ∅ ∧ (2nd𝑤) = ∅))
4 wlkcpr 27422 . . . . . . . 8 (𝑤 ∈ (Walks‘𝐺) ↔ (1st𝑤)(Walks‘𝐺)(2nd𝑤))
5 wlkn0 27414 . . . . . . . . 9 ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → (2nd𝑤) ≠ ∅)
6 eqneqall 3001 . . . . . . . . . 10 ((2nd𝑤) = ∅ → ((2nd𝑤) ≠ ∅ → (Walks‘𝐺) = ∅))
76adantl 485 . . . . . . . . 9 (((1st𝑤) = ∅ ∧ (2nd𝑤) = ∅) → ((2nd𝑤) ≠ ∅ → (Walks‘𝐺) = ∅))
85, 7syl5com 31 . . . . . . . 8 ((1st𝑤)(Walks‘𝐺)(2nd𝑤) → (((1st𝑤) = ∅ ∧ (2nd𝑤) = ∅) → (Walks‘𝐺) = ∅))
94, 8sylbi 220 . . . . . . 7 (𝑤 ∈ (Walks‘𝐺) → (((1st𝑤) = ∅ ∧ (2nd𝑤) = ∅) → (Walks‘𝐺) = ∅))
109adantl 485 . . . . . 6 (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → (((1st𝑤) = ∅ ∧ (2nd𝑤) = ∅) → (Walks‘𝐺) = ∅))
113, 10mpd 15 . . . . 5 (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → (Walks‘𝐺) = ∅)
1211expcom 417 . . . 4 (𝑤 ∈ (Walks‘𝐺) → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅))
1312exlimiv 1931 . . 3 (∃𝑤 𝑤 ∈ (Walks‘𝐺) → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅))
142, 13sylbi 220 . 2 (¬ (Walks‘𝐺) = ∅ → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅))
151, 14pm2.61i 185 1 ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∅c0 4246   class class class wbr 5033  ‘cfv 6328  1st c1st 7673  2nd c2nd 7674  Vtxcvtx 26793  Walkscwlks 27390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-wlks 27393 This theorem is referenced by:  0wlk0  27446  wlk0prc  27447  acycgr0v  32509  prclisacycgr  32512
 Copyright terms: Public domain W3C validator