| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > g0wlk0 | Structured version Visualization version GIF version | ||
| Description: There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
| Ref | Expression |
|---|---|
| g0wlk0 | ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ ((Walks‘𝐺) = ∅ → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) | |
| 2 | neq0 4301 | . . 3 ⊢ (¬ (Walks‘𝐺) = ∅ ↔ ∃𝑤 𝑤 ∈ (Walks‘𝐺)) | |
| 3 | wlkv0 29630 | . . . . . 6 ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → ((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅)) | |
| 4 | wlkcpr 29609 | . . . . . . . 8 ⊢ (𝑤 ∈ (Walks‘𝐺) ↔ (1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤)) | |
| 5 | wlkn0 29601 | . . . . . . . . 9 ⊢ ((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → (2nd ‘𝑤) ≠ ∅) | |
| 6 | eqneqall 2940 | . . . . . . . . . 10 ⊢ ((2nd ‘𝑤) = ∅ → ((2nd ‘𝑤) ≠ ∅ → (Walks‘𝐺) = ∅)) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → ((2nd ‘𝑤) ≠ ∅ → (Walks‘𝐺) = ∅)) |
| 8 | 5, 7 | syl5com 31 | . . . . . . . 8 ⊢ ((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → (Walks‘𝐺) = ∅)) |
| 9 | 4, 8 | sylbi 217 | . . . . . . 7 ⊢ (𝑤 ∈ (Walks‘𝐺) → (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → (Walks‘𝐺) = ∅)) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → (Walks‘𝐺) = ∅)) |
| 11 | 3, 10 | mpd 15 | . . . . 5 ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → (Walks‘𝐺) = ∅) |
| 12 | 11 | expcom 413 | . . . 4 ⊢ (𝑤 ∈ (Walks‘𝐺) → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) |
| 13 | 12 | exlimiv 1931 | . . 3 ⊢ (∃𝑤 𝑤 ∈ (Walks‘𝐺) → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) |
| 14 | 2, 13 | sylbi 217 | . 2 ⊢ (¬ (Walks‘𝐺) = ∅ → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) |
| 15 | 1, 14 | pm2.61i 182 | 1 ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 class class class wbr 5093 ‘cfv 6486 1st c1st 7925 2nd c2nd 7926 Vtxcvtx 28976 Walkscwlks 29577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-wlks 29580 |
| This theorem is referenced by: 0wlk0 29632 wlk0prc 29633 acycgr0v 35213 prclisacycgr 35216 |
| Copyright terms: Public domain | W3C validator |