![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > g0wlk0 | Structured version Visualization version GIF version |
Description: There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
Ref | Expression |
---|---|
g0wlk0 | β’ ((VtxβπΊ) = β β (WalksβπΊ) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 β’ ((WalksβπΊ) = β β ((VtxβπΊ) = β β (WalksβπΊ) = β )) | |
2 | neq0 4346 | . . 3 β’ (Β¬ (WalksβπΊ) = β β βπ€ π€ β (WalksβπΊ)) | |
3 | wlkv0 29173 | . . . . . 6 β’ (((VtxβπΊ) = β β§ π€ β (WalksβπΊ)) β ((1st βπ€) = β β§ (2nd βπ€) = β )) | |
4 | wlkcpr 29151 | . . . . . . . 8 β’ (π€ β (WalksβπΊ) β (1st βπ€)(WalksβπΊ)(2nd βπ€)) | |
5 | wlkn0 29143 | . . . . . . . . 9 β’ ((1st βπ€)(WalksβπΊ)(2nd βπ€) β (2nd βπ€) β β ) | |
6 | eqneqall 2949 | . . . . . . . . . 10 β’ ((2nd βπ€) = β β ((2nd βπ€) β β β (WalksβπΊ) = β )) | |
7 | 6 | adantl 480 | . . . . . . . . 9 β’ (((1st βπ€) = β β§ (2nd βπ€) = β ) β ((2nd βπ€) β β β (WalksβπΊ) = β )) |
8 | 5, 7 | syl5com 31 | . . . . . . . 8 β’ ((1st βπ€)(WalksβπΊ)(2nd βπ€) β (((1st βπ€) = β β§ (2nd βπ€) = β ) β (WalksβπΊ) = β )) |
9 | 4, 8 | sylbi 216 | . . . . . . 7 β’ (π€ β (WalksβπΊ) β (((1st βπ€) = β β§ (2nd βπ€) = β ) β (WalksβπΊ) = β )) |
10 | 9 | adantl 480 | . . . . . 6 β’ (((VtxβπΊ) = β β§ π€ β (WalksβπΊ)) β (((1st βπ€) = β β§ (2nd βπ€) = β ) β (WalksβπΊ) = β )) |
11 | 3, 10 | mpd 15 | . . . . 5 β’ (((VtxβπΊ) = β β§ π€ β (WalksβπΊ)) β (WalksβπΊ) = β ) |
12 | 11 | expcom 412 | . . . 4 β’ (π€ β (WalksβπΊ) β ((VtxβπΊ) = β β (WalksβπΊ) = β )) |
13 | 12 | exlimiv 1931 | . . 3 β’ (βπ€ π€ β (WalksβπΊ) β ((VtxβπΊ) = β β (WalksβπΊ) = β )) |
14 | 2, 13 | sylbi 216 | . 2 β’ (Β¬ (WalksβπΊ) = β β ((VtxβπΊ) = β β (WalksβπΊ) = β )) |
15 | 1, 14 | pm2.61i 182 | 1 β’ ((VtxβπΊ) = β β (WalksβπΊ) = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1539 βwex 1779 β wcel 2104 β wne 2938 β c0 4323 class class class wbr 5149 βcfv 6544 1st c1st 7977 2nd c2nd 7978 Vtxcvtx 28521 Walkscwlks 29118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-hash 14297 df-word 14471 df-wlks 29121 |
This theorem is referenced by: 0wlk0 29175 wlk0prc 29176 acycgr0v 34435 prclisacycgr 34438 |
Copyright terms: Public domain | W3C validator |