![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > g0wlk0 | Structured version Visualization version GIF version |
Description: There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
Ref | Expression |
---|---|
g0wlk0 | ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ ((Walks‘𝐺) = ∅ → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) | |
2 | neq0 4229 | . . 3 ⊢ (¬ (Walks‘𝐺) = ∅ ↔ ∃𝑤 𝑤 ∈ (Walks‘𝐺)) | |
3 | wlkv0 27115 | . . . . . 6 ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → ((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅)) | |
4 | wlkcpr 27093 | . . . . . . . 8 ⊢ (𝑤 ∈ (Walks‘𝐺) ↔ (1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤)) | |
5 | wlkn0 27085 | . . . . . . . . 9 ⊢ ((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → (2nd ‘𝑤) ≠ ∅) | |
6 | eqneqall 2995 | . . . . . . . . . 10 ⊢ ((2nd ‘𝑤) = ∅ → ((2nd ‘𝑤) ≠ ∅ → (Walks‘𝐺) = ∅)) | |
7 | 6 | adantl 482 | . . . . . . . . 9 ⊢ (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → ((2nd ‘𝑤) ≠ ∅ → (Walks‘𝐺) = ∅)) |
8 | 5, 7 | syl5com 31 | . . . . . . . 8 ⊢ ((1st ‘𝑤)(Walks‘𝐺)(2nd ‘𝑤) → (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → (Walks‘𝐺) = ∅)) |
9 | 4, 8 | sylbi 218 | . . . . . . 7 ⊢ (𝑤 ∈ (Walks‘𝐺) → (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → (Walks‘𝐺) = ∅)) |
10 | 9 | adantl 482 | . . . . . 6 ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → (((1st ‘𝑤) = ∅ ∧ (2nd ‘𝑤) = ∅) → (Walks‘𝐺) = ∅)) |
11 | 3, 10 | mpd 15 | . . . . 5 ⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑤 ∈ (Walks‘𝐺)) → (Walks‘𝐺) = ∅) |
12 | 11 | expcom 414 | . . . 4 ⊢ (𝑤 ∈ (Walks‘𝐺) → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) |
13 | 12 | exlimiv 1908 | . . 3 ⊢ (∃𝑤 𝑤 ∈ (Walks‘𝐺) → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) |
14 | 2, 13 | sylbi 218 | . 2 ⊢ (¬ (Walks‘𝐺) = ∅ → ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)) |
15 | 1, 14 | pm2.61i 183 | 1 ⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1522 ∃wex 1761 ∈ wcel 2081 ≠ wne 2984 ∅c0 4211 class class class wbr 4962 ‘cfv 6225 1st c1st 7543 2nd c2nd 7544 Vtxcvtx 26464 Walkscwlks 27061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ifp 1056 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-fzo 12884 df-hash 13541 df-word 13708 df-wlks 27064 |
This theorem is referenced by: 0wlk0 27117 wlk0prc 27118 acycgr0v 32003 prclisacycgr 32006 |
Copyright terms: Public domain | W3C validator |