MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmnsgima Structured version   Visualization version   GIF version

Theorem ghmnsgima 19172
Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
ghmnsgima.1 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmnsgima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (NrmSGrp‘𝑇))

Proof of Theorem ghmnsgima
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 nsgsubg 19090 . . . 4 (𝑈 ∈ (NrmSGrp‘𝑆) → 𝑈 ∈ (SubGrp‘𝑆))
323ad2ant2 1134 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ∈ (SubGrp‘𝑆))
4 ghmima 19169 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
51, 3, 4syl2anc 584 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
61adantr 480 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
7 ghmgrp1 19150 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
86, 7syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑆 ∈ Grp)
9 simprl 770 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑧 ∈ (Base‘𝑆))
10 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
1110subgss 19059 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ (Base‘𝑆))
123, 11syl 17 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ⊆ (Base‘𝑆))
1312adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑈 ⊆ (Base‘𝑆))
14 simprr 772 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑥𝑈)
1513, 14sseldd 3947 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑥 ∈ (Base‘𝑆))
16 eqid 2729 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1710, 16grpcl 18873 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆))
188, 9, 15, 17syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆))
19 eqid 2729 . . . . . . . 8 (-g𝑆) = (-g𝑆)
20 eqid 2729 . . . . . . . 8 (-g𝑇) = (-g𝑇)
2110, 19, 20ghmsub 19156 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)))
226, 18, 9, 21syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)))
23 eqid 2729 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
2410, 16, 23ghmlin 19153 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘(𝑧(+g𝑆)𝑥)) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
256, 9, 15, 24syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘(𝑧(+g𝑆)𝑥)) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
2625oveq1d 7402 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
2722, 26eqtrd 2764 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
28 ghmnsgima.1 . . . . . . . . . 10 𝑌 = (Base‘𝑇)
2910, 28ghmf 19152 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝑌)
301, 29syl 17 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹:(Base‘𝑆)⟶𝑌)
3130adantr 480 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹:(Base‘𝑆)⟶𝑌)
3231ffnd 6689 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹 Fn (Base‘𝑆))
33 simpl2 1193 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑈 ∈ (NrmSGrp‘𝑆))
3410, 16, 19nsgconj 19091 . . . . . . 7 ((𝑈 ∈ (NrmSGrp‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈) → ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈)
3533, 9, 14, 34syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈)
36 fnfvima 7207 . . . . . 6 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) ∈ (𝐹𝑈))
3732, 13, 35, 36syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) ∈ (𝐹𝑈))
3827, 37eqeltrrd 2829 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈))
3938ralrimivva 3180 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈))
4030ffnd 6689 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 Fn (Base‘𝑆))
41 oveq1 7394 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑇)𝑦) = ((𝐹𝑧)(+g𝑇)𝑦))
42 id 22 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → 𝑥 = (𝐹𝑧))
4341, 42oveq12d 7405 . . . . . . . 8 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) = (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)))
4443eleq1d 2813 . . . . . . 7 (𝑥 = (𝐹𝑧) → (((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4544ralbidv 3156 . . . . . 6 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4645ralrn 7060 . . . . 5 (𝐹 Fn (Base‘𝑆) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4740, 46syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
48 simp3 1138 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ran 𝐹 = 𝑌)
4948raleqdv 3299 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈)))
50 oveq2 7395 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑇)𝑦) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
5150oveq1d 7402 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
5251eleq1d 2813 . . . . . . 7 (𝑦 = (𝐹𝑥) → ((((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5352ralima 7211 . . . . . 6 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆)) → (∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5440, 12, 53syl2anc 584 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5554ralbidv 3156 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5647, 49, 553bitr3d 309 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5739, 56mpbird 257 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈))
5828, 23, 20isnsg3 19092 . 2 ((𝐹𝑈) ∈ (NrmSGrp‘𝑇) ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈)))
595, 57, 58sylanbrc 583 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (NrmSGrp‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865  -gcsg 18867  SubGrpcsubg 19052  NrmSGrpcnsg 19053   GrpHom cghm 19144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-ghm 19145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator