MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmnsgima Structured version   Visualization version   GIF version

Theorem ghmnsgima 19259
Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
ghmnsgima.1 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmnsgima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (NrmSGrp‘𝑇))

Proof of Theorem ghmnsgima
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 nsgsubg 19177 . . . 4 (𝑈 ∈ (NrmSGrp‘𝑆) → 𝑈 ∈ (SubGrp‘𝑆))
323ad2ant2 1134 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ∈ (SubGrp‘𝑆))
4 ghmima 19256 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
51, 3, 4syl2anc 584 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
61adantr 480 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
7 ghmgrp1 19237 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
86, 7syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑆 ∈ Grp)
9 simprl 770 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑧 ∈ (Base‘𝑆))
10 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
1110subgss 19146 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈 ⊆ (Base‘𝑆))
123, 11syl 17 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝑈 ⊆ (Base‘𝑆))
1312adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑈 ⊆ (Base‘𝑆))
14 simprr 772 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑥𝑈)
1513, 14sseldd 3983 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑥 ∈ (Base‘𝑆))
16 eqid 2736 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1710, 16grpcl 18960 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆))
188, 9, 15, 17syl3anc 1372 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆))
19 eqid 2736 . . . . . . . 8 (-g𝑆) = (-g𝑆)
20 eqid 2736 . . . . . . . 8 (-g𝑇) = (-g𝑇)
2110, 19, 20ghmsub 19243 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑧(+g𝑆)𝑥) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)))
226, 18, 9, 21syl3anc 1372 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)))
23 eqid 2736 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
2410, 16, 23ghmlin 19240 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘(𝑧(+g𝑆)𝑥)) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
256, 9, 15, 24syl3anc 1372 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘(𝑧(+g𝑆)𝑥)) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
2625oveq1d 7447 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → ((𝐹‘(𝑧(+g𝑆)𝑥))(-g𝑇)(𝐹𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
2722, 26eqtrd 2776 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
28 ghmnsgima.1 . . . . . . . . . 10 𝑌 = (Base‘𝑇)
2910, 28ghmf 19239 . . . . . . . . 9 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝑌)
301, 29syl 17 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹:(Base‘𝑆)⟶𝑌)
3130adantr 480 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹:(Base‘𝑆)⟶𝑌)
3231ffnd 6736 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝐹 Fn (Base‘𝑆))
33 simpl2 1192 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → 𝑈 ∈ (NrmSGrp‘𝑆))
3410, 16, 19nsgconj 19178 . . . . . . 7 ((𝑈 ∈ (NrmSGrp‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈) → ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈)
3533, 9, 14, 34syl3anc 1372 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈)
36 fnfvima 7254 . . . . . 6 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ ((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧) ∈ 𝑈) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) ∈ (𝐹𝑈))
3732, 13, 35, 36syl3anc 1372 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (𝐹‘((𝑧(+g𝑆)𝑥)(-g𝑆)𝑧)) ∈ (𝐹𝑈))
3827, 37eqeltrrd 2841 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) ∧ (𝑧 ∈ (Base‘𝑆) ∧ 𝑥𝑈)) → (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈))
3938ralrimivva 3201 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈))
4030ffnd 6736 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → 𝐹 Fn (Base‘𝑆))
41 oveq1 7439 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑇)𝑦) = ((𝐹𝑧)(+g𝑇)𝑦))
42 id 22 . . . . . . . . 9 (𝑥 = (𝐹𝑧) → 𝑥 = (𝐹𝑧))
4341, 42oveq12d 7450 . . . . . . . 8 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) = (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)))
4443eleq1d 2825 . . . . . . 7 (𝑥 = (𝐹𝑧) → (((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4544ralbidv 3177 . . . . . 6 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4645ralrn 7107 . . . . 5 (𝐹 Fn (Base‘𝑆) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
4740, 46syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
48 simp3 1138 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ran 𝐹 = 𝑌)
4948raleqdv 3325 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥 ∈ ran 𝐹𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈)))
50 oveq2 7440 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑇)𝑦) = ((𝐹𝑧)(+g𝑇)(𝐹𝑥)))
5150oveq1d 7447 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) = (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)))
5251eleq1d 2825 . . . . . . 7 (𝑦 = (𝐹𝑥) → ((((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5352ralima 7258 . . . . . 6 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆)) → (∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5440, 12, 53syl2anc 584 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5554ralbidv 3177 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑧 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑈)(((𝐹𝑧)(+g𝑇)𝑦)(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5647, 49, 553bitr3d 309 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈) ↔ ∀𝑧 ∈ (Base‘𝑆)∀𝑥𝑈 (((𝐹𝑧)(+g𝑇)(𝐹𝑥))(-g𝑇)(𝐹𝑧)) ∈ (𝐹𝑈)))
5739, 56mpbird 257 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈))
5828, 23, 20isnsg3 19179 . 2 ((𝐹𝑈) ∈ (NrmSGrp‘𝑇) ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑥𝑌𝑦 ∈ (𝐹𝑈)((𝑥(+g𝑇)𝑦)(-g𝑇)𝑥) ∈ (𝐹𝑈)))
595, 57, 58sylanbrc 583 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (NrmSGrp‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wss 3950  ran crn 5685  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  Grpcgrp 18952  -gcsg 18954  SubGrpcsubg 19139  NrmSGrpcnsg 19140   GrpHom cghm 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-nsg 19143  df-ghm 19232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator