MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmnsgpreima Structured version   Visualization version   GIF version

Theorem ghmnsgpreima 18774
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
ghmnsgpreima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (NrmSGrp‘𝑆))

Proof of Theorem ghmnsgpreima
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 18701 . . 3 (𝑉 ∈ (NrmSGrp‘𝑇) → 𝑉 ∈ (SubGrp‘𝑇))
2 ghmpreima 18771 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
31, 2sylan2 592 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
4 ghmgrp1 18751 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
54ad2antrr 722 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑆 ∈ Grp)
6 simprl 767 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑥 ∈ (Base‘𝑆))
7 simprr 769 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑦 ∈ (𝐹𝑉))
8 simpll 763 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
9 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
119, 10ghmf 18753 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
128, 11syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1312ffnd 6585 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝐹 Fn (Base‘𝑆))
14 elpreima 6917 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (𝐹𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉)))
1513, 14syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑦 ∈ (𝐹𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉)))
167, 15mpbid 231 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) ∈ 𝑉))
1716simpld 494 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑦 ∈ (Base‘𝑆))
18 eqid 2738 . . . . . . 7 (+g𝑆) = (+g𝑆)
199, 18grpcl 18500 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
205, 6, 17, 19syl3anc 1369 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
21 eqid 2738 . . . . . 6 (-g𝑆) = (-g𝑆)
229, 21grpsubcl 18570 . . . . 5 ((𝑆 ∈ Grp ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆))
235, 20, 6, 22syl3anc 1369 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆))
24 eqid 2738 . . . . . . . 8 (-g𝑇) = (-g𝑇)
259, 21, 24ghmsub 18757 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)))
268, 20, 6, 25syl3anc 1369 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)))
27 eqid 2738 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
289, 18, 27ghmlin 18754 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
298, 6, 17, 28syl3anc 1369 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3029oveq1d 7270 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝐹‘(𝑥(+g𝑆)𝑦))(-g𝑇)(𝐹𝑥)) = (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)))
3126, 30eqtrd 2778 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) = (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)))
32 simplr 765 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → 𝑉 ∈ (NrmSGrp‘𝑇))
3312, 6ffvelrnd 6944 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹𝑥) ∈ (Base‘𝑇))
3416simprd 495 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹𝑦) ∈ 𝑉)
3510, 27, 24nsgconj 18702 . . . . . 6 ((𝑉 ∈ (NrmSGrp‘𝑇) ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ 𝑉) → (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)) ∈ 𝑉)
3632, 33, 34, 35syl3anc 1369 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (((𝐹𝑥)(+g𝑇)(𝐹𝑦))(-g𝑇)(𝐹𝑥)) ∈ 𝑉)
3731, 36eqeltrd 2839 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)
38 elpreima 6917 . . . . 5 (𝐹 Fn (Base‘𝑆) → (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉) ↔ (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)))
3913, 38syl 17 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉) ↔ (((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥)) ∈ 𝑉)))
4023, 37, 39mpbir2and 709 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝐹𝑉))) → ((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉))
4140ralrimivva 3114 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑉)((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉))
429, 18, 21isnsg3 18703 . 2 ((𝐹𝑉) ∈ (NrmSGrp‘𝑆) ↔ ((𝐹𝑉) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (𝐹𝑉)((𝑥(+g𝑆)𝑦)(-g𝑆)𝑥) ∈ (𝐹𝑉)))
433, 41, 42sylanbrc 582 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (NrmSGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664  NrmSGrpcnsg 18665   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-nsg 18668  df-ghm 18747
This theorem is referenced by:  ghmker  18775
  Copyright terms: Public domain W3C validator