| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nsgsubg 19177 | . . 3
⊢ (𝑉 ∈ (NrmSGrp‘𝑇) → 𝑉 ∈ (SubGrp‘𝑇)) | 
| 2 |  | ghmpreima 19257 | . . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) | 
| 3 | 1, 2 | sylan2 593 | . 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) | 
| 4 |  | ghmgrp1 19237 | . . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | 
| 5 | 4 | ad2antrr 726 | . . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑆 ∈ Grp) | 
| 6 |  | simprl 770 | . . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑥 ∈ (Base‘𝑆)) | 
| 7 |  | simprr 772 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (◡𝐹 “ 𝑉)) | 
| 8 |  | simpll 766 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
| 9 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 10 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 11 | 9, 10 | ghmf 19239 | . . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | 
| 12 | 8, 11 | syl 17 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | 
| 13 | 12 | ffnd 6736 | . . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 Fn (Base‘𝑆)) | 
| 14 |  | elpreima 7077 | . . . . . . . . 9
⊢ (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) | 
| 15 | 13, 14 | syl 17 | . . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) | 
| 16 | 7, 15 | mpbid 232 | . . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉)) | 
| 17 | 16 | simpld 494 | . . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (Base‘𝑆)) | 
| 18 |  | eqid 2736 | . . . . . . 7
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 19 | 9, 18 | grpcl 18960 | . . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) | 
| 20 | 5, 6, 17, 19 | syl3anc 1372 | . . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) | 
| 21 |  | eqid 2736 | . . . . . 6
⊢
(-g‘𝑆) = (-g‘𝑆) | 
| 22 | 9, 21 | grpsubcl 19039 | . . . . 5
⊢ ((𝑆 ∈ Grp ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) | 
| 23 | 5, 20, 6, 22 | syl3anc 1372 | . . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) | 
| 24 |  | eqid 2736 | . . . . . . . 8
⊢
(-g‘𝑇) = (-g‘𝑇) | 
| 25 | 9, 21, 24 | ghmsub 19243 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) | 
| 26 | 8, 20, 6, 25 | syl3anc 1372 | . . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) | 
| 27 |  | eqid 2736 | . . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) | 
| 28 | 9, 18, 27 | ghmlin 19240 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) | 
| 29 | 8, 6, 17, 28 | syl3anc 1372 | . . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) | 
| 30 | 29 | oveq1d 7447 | . . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) | 
| 31 | 26, 30 | eqtrd 2776 | . . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) | 
| 32 |  | simplr 768 | . . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑉 ∈ (NrmSGrp‘𝑇)) | 
| 33 | 12, 6 | ffvelcdmd 7104 | . . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑥) ∈ (Base‘𝑇)) | 
| 34 | 16 | simprd 495 | . . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑦) ∈ 𝑉) | 
| 35 | 10, 27, 24 | nsgconj 19178 | . . . . . 6
⊢ ((𝑉 ∈ (NrmSGrp‘𝑇) ∧ (𝐹‘𝑥) ∈ (Base‘𝑇) ∧ (𝐹‘𝑦) ∈ 𝑉) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) | 
| 36 | 32, 33, 34, 35 | syl3anc 1372 | . . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) | 
| 37 | 31, 36 | eqeltrd 2840 | . . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉) | 
| 38 |  | elpreima 7077 | . . . . 5
⊢ (𝐹 Fn (Base‘𝑆) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) | 
| 39 | 13, 38 | syl 17 | . . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) | 
| 40 | 23, 37, 39 | mpbir2and 713 | . . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) | 
| 41 | 40 | ralrimivva 3201 | . 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) | 
| 42 | 9, 18, 21 | isnsg3 19179 | . 2
⊢ ((◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆) ↔ ((◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉))) | 
| 43 | 3, 41, 42 | sylanbrc 583 | 1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) |