Step | Hyp | Ref
| Expression |
1 | | nsgsubg 18701 |
. . 3
⊢ (𝑉 ∈ (NrmSGrp‘𝑇) → 𝑉 ∈ (SubGrp‘𝑇)) |
2 | | ghmpreima 18771 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
3 | 1, 2 | sylan2 592 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
4 | | ghmgrp1 18751 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
5 | 4 | ad2antrr 722 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑆 ∈ Grp) |
6 | | simprl 767 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑥 ∈ (Base‘𝑆)) |
7 | | simprr 769 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (◡𝐹 “ 𝑉)) |
8 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
9 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) |
10 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑇) =
(Base‘𝑇) |
11 | 9, 10 | ghmf 18753 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
12 | 8, 11 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
13 | 12 | ffnd 6585 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 Fn (Base‘𝑆)) |
14 | | elpreima 6917 |
. . . . . . . . 9
⊢ (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) |
16 | 7, 15 | mpbid 231 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉)) |
17 | 16 | simpld 494 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (Base‘𝑆)) |
18 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑆) = (+g‘𝑆) |
19 | 9, 18 | grpcl 18500 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
20 | 5, 6, 17, 19 | syl3anc 1369 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
21 | | eqid 2738 |
. . . . . 6
⊢
(-g‘𝑆) = (-g‘𝑆) |
22 | 9, 21 | grpsubcl 18570 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) |
23 | 5, 20, 6, 22 | syl3anc 1369 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) |
24 | | eqid 2738 |
. . . . . . . 8
⊢
(-g‘𝑇) = (-g‘𝑇) |
25 | 9, 21, 24 | ghmsub 18757 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
26 | 8, 20, 6, 25 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
28 | 9, 18, 27 | ghmlin 18754 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
29 | 8, 6, 17, 28 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
30 | 29 | oveq1d 7270 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
31 | 26, 30 | eqtrd 2778 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
32 | | simplr 765 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑉 ∈ (NrmSGrp‘𝑇)) |
33 | 12, 6 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑥) ∈ (Base‘𝑇)) |
34 | 16 | simprd 495 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑦) ∈ 𝑉) |
35 | 10, 27, 24 | nsgconj 18702 |
. . . . . 6
⊢ ((𝑉 ∈ (NrmSGrp‘𝑇) ∧ (𝐹‘𝑥) ∈ (Base‘𝑇) ∧ (𝐹‘𝑦) ∈ 𝑉) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) |
36 | 32, 33, 34, 35 | syl3anc 1369 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) |
37 | 31, 36 | eqeltrd 2839 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉) |
38 | | elpreima 6917 |
. . . . 5
⊢ (𝐹 Fn (Base‘𝑆) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) |
39 | 13, 38 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) |
40 | 23, 37, 39 | mpbir2and 709 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) |
41 | 40 | ralrimivva 3114 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) |
42 | 9, 18, 21 | isnsg3 18703 |
. 2
⊢ ((◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆) ↔ ((◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉))) |
43 | 3, 41, 42 | sylanbrc 582 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) |