![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dchrrcl.g | β’ πΊ = (DChrβπ) |
dchrrcl.b | β’ π· = (BaseβπΊ) |
Ref | Expression |
---|---|
dchrrcl | β’ (π β π· β π β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dchr 27116 | . . 3 β’ DChr = (π β β β¦ β¦(β€/nβ€βπ) / π§β¦β¦{π₯ β ((mulGrpβπ§) MndHom (mulGrpββfld)) β£ (((Baseβπ§) β (Unitβπ§)) Γ {0}) β π₯} / πβ¦{β¨(Baseβndx), πβ©, β¨(+gβndx), ( βf Β· βΎ (π Γ π))β©}) | |
2 | 1 | dmmptss 6233 | . 2 β’ dom DChr β β |
3 | n0i 4328 | . . 3 β’ (π β π· β Β¬ π· = β ) | |
4 | dchrrcl.g | . . . . 5 β’ πΊ = (DChrβπ) | |
5 | ndmfv 6919 | . . . . 5 β’ (Β¬ π β dom DChr β (DChrβπ) = β ) | |
6 | 4, 5 | eqtrid 2778 | . . . 4 β’ (Β¬ π β dom DChr β πΊ = β ) |
7 | fveq2 6884 | . . . . 5 β’ (πΊ = β β (BaseβπΊ) = (Baseββ )) | |
8 | dchrrcl.b | . . . . 5 β’ π· = (BaseβπΊ) | |
9 | base0 17155 | . . . . 5 β’ β = (Baseββ ) | |
10 | 7, 8, 9 | 3eqtr4g 2791 | . . . 4 β’ (πΊ = β β π· = β ) |
11 | 6, 10 | syl 17 | . . 3 β’ (Β¬ π β dom DChr β π· = β ) |
12 | 3, 11 | nsyl2 141 | . 2 β’ (π β π· β π β dom DChr) |
13 | 2, 12 | sselid 3975 | 1 β’ (π β π· β π β β) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1533 β wcel 2098 {crab 3426 β¦csb 3888 β cdif 3940 β wss 3943 β c0 4317 {csn 4623 {cpr 4625 β¨cop 4629 Γ cxp 5667 dom cdm 5669 βΎ cres 5671 βcfv 6536 (class class class)co 7404 βf cof 7664 0cc0 11109 Β· cmul 11114 βcn 12213 ndxcnx 17132 Basecbs 17150 +gcplusg 17203 MndHom cmhm 18708 mulGrpcmgp 20036 Unitcui 20254 βfldccnfld 21235 β€/nβ€czn 21384 DChrcdchr 27115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-nn 12214 df-slot 17121 df-ndx 17133 df-base 17151 df-dchr 27116 |
This theorem is referenced by: dchrmhm 27124 dchrf 27125 dchrelbas4 27126 dchrzrh1 27127 dchrzrhcl 27128 dchrzrhmul 27129 dchrmul 27131 dchrmulcl 27132 dchrn0 27133 dchrmullid 27135 dchrinvcl 27136 dchrghm 27139 dchrabs 27143 dchrinv 27144 dchrsum2 27151 dchrsum 27152 dchr2sum 27156 |
Copyright terms: Public domain | W3C validator |