| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| dchrrcl.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrrcl.b | ⊢ 𝐷 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| dchrrcl | ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dchr 27177 | . . 3 ⊢ DChr = (𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) | |
| 2 | 1 | dmmptss 6194 | . 2 ⊢ dom DChr ⊆ ℕ |
| 3 | n0i 4289 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅) | |
| 4 | dchrrcl.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
| 5 | ndmfv 6860 | . . . . 5 ⊢ (¬ 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅) | |
| 6 | 4, 5 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐺 = ∅) |
| 7 | fveq2 6828 | . . . . 5 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
| 8 | dchrrcl.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 9 | base0 17131 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 10 | 7, 8, 9 | 3eqtr4g 2791 | . . . 4 ⊢ (𝐺 = ∅ → 𝐷 = ∅) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐷 = ∅) |
| 12 | 3, 11 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr) |
| 13 | 2, 12 | sselid 3927 | 1 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ⦋csb 3845 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4282 {csn 4575 {cpr 4577 〈cop 4581 × cxp 5617 dom cdm 5619 ↾ cres 5621 ‘cfv 6487 (class class class)co 7352 ∘f cof 7614 0cc0 11012 · cmul 11017 ℕcn 12131 ndxcnx 17110 Basecbs 17126 +gcplusg 17167 MndHom cmhm 18695 mulGrpcmgp 20064 Unitcui 20279 ℂfldccnfld 21297 ℤ/nℤczn 21445 DChrcdchr 27176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-1cn 11070 ax-addcl 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12132 df-slot 17099 df-ndx 17111 df-base 17127 df-dchr 27177 |
| This theorem is referenced by: dchrmhm 27185 dchrf 27186 dchrelbas4 27187 dchrzrh1 27188 dchrzrhcl 27189 dchrzrhmul 27190 dchrmul 27192 dchrmulcl 27193 dchrn0 27194 dchrmullid 27196 dchrinvcl 27197 dchrghm 27200 dchrabs 27204 dchrinv 27205 dchrsum2 27212 dchrsum 27213 dchr2sum 27217 |
| Copyright terms: Public domain | W3C validator |