MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrrcl Structured version   Visualization version   GIF version

Theorem dchrrcl 27184
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
dchrrcl.g 𝐺 = (DChr‘𝑁)
dchrrcl.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrrcl (𝑋𝐷𝑁 ∈ ℕ)

Proof of Theorem dchrrcl
Dummy variables 𝑛 𝑏 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dchr 27177 . . 3 DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩})
21dmmptss 6194 . 2 dom DChr ⊆ ℕ
3 n0i 4289 . . 3 (𝑋𝐷 → ¬ 𝐷 = ∅)
4 dchrrcl.g . . . . 5 𝐺 = (DChr‘𝑁)
5 ndmfv 6860 . . . . 5 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅)
64, 5eqtrid 2778 . . . 4 𝑁 ∈ dom DChr → 𝐺 = ∅)
7 fveq2 6828 . . . . 5 (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅))
8 dchrrcl.b . . . . 5 𝐷 = (Base‘𝐺)
9 base0 17131 . . . . 5 ∅ = (Base‘∅)
107, 8, 93eqtr4g 2791 . . . 4 (𝐺 = ∅ → 𝐷 = ∅)
116, 10syl 17 . . 3 𝑁 ∈ dom DChr → 𝐷 = ∅)
123, 11nsyl2 141 . 2 (𝑋𝐷𝑁 ∈ dom DChr)
132, 12sselid 3927 1 (𝑋𝐷𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  {crab 3395  csb 3845  cdif 3894  wss 3897  c0 4282  {csn 4575  {cpr 4577  cop 4581   × cxp 5617  dom cdm 5619  cres 5621  cfv 6487  (class class class)co 7352  f cof 7614  0cc0 11012   · cmul 11017  cn 12131  ndxcnx 17110  Basecbs 17126  +gcplusg 17167   MndHom cmhm 18695  mulGrpcmgp 20064  Unitcui 20279  fldccnfld 21297  ℤ/nczn 21445  DChrcdchr 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-1cn 11070  ax-addcl 11072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12132  df-slot 17099  df-ndx 17111  df-base 17127  df-dchr 27177
This theorem is referenced by:  dchrmhm  27185  dchrf  27186  dchrelbas4  27187  dchrzrh1  27188  dchrzrhcl  27189  dchrzrhmul  27190  dchrmul  27192  dchrmulcl  27193  dchrn0  27194  dchrmullid  27196  dchrinvcl  27197  dchrghm  27200  dchrabs  27204  dchrinv  27205  dchrsum2  27212  dchrsum  27213  dchr2sum  27217
  Copyright terms: Public domain W3C validator