![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dchrrcl.g | β’ πΊ = (DChrβπ) |
dchrrcl.b | β’ π· = (BaseβπΊ) |
Ref | Expression |
---|---|
dchrrcl | β’ (π β π· β π β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dchr 27186 | . . 3 β’ DChr = (π β β β¦ β¦(β€/nβ€βπ) / π§β¦β¦{π₯ β ((mulGrpβπ§) MndHom (mulGrpββfld)) β£ (((Baseβπ§) β (Unitβπ§)) Γ {0}) β π₯} / πβ¦{β¨(Baseβndx), πβ©, β¨(+gβndx), ( βf Β· βΎ (π Γ π))β©}) | |
2 | 1 | dmmptss 6250 | . 2 β’ dom DChr β β |
3 | n0i 4337 | . . 3 β’ (π β π· β Β¬ π· = β ) | |
4 | dchrrcl.g | . . . . 5 β’ πΊ = (DChrβπ) | |
5 | ndmfv 6937 | . . . . 5 β’ (Β¬ π β dom DChr β (DChrβπ) = β ) | |
6 | 4, 5 | eqtrid 2780 | . . . 4 β’ (Β¬ π β dom DChr β πΊ = β ) |
7 | fveq2 6902 | . . . . 5 β’ (πΊ = β β (BaseβπΊ) = (Baseββ )) | |
8 | dchrrcl.b | . . . . 5 β’ π· = (BaseβπΊ) | |
9 | base0 17192 | . . . . 5 β’ β = (Baseββ ) | |
10 | 7, 8, 9 | 3eqtr4g 2793 | . . . 4 β’ (πΊ = β β π· = β ) |
11 | 6, 10 | syl 17 | . . 3 β’ (Β¬ π β dom DChr β π· = β ) |
12 | 3, 11 | nsyl2 141 | . 2 β’ (π β π· β π β dom DChr) |
13 | 2, 12 | sselid 3980 | 1 β’ (π β π· β π β β) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1533 β wcel 2098 {crab 3430 β¦csb 3894 β cdif 3946 β wss 3949 β c0 4326 {csn 4632 {cpr 4634 β¨cop 4638 Γ cxp 5680 dom cdm 5682 βΎ cres 5684 βcfv 6553 (class class class)co 7426 βf cof 7689 0cc0 11146 Β· cmul 11151 βcn 12250 ndxcnx 17169 Basecbs 17187 +gcplusg 17240 MndHom cmhm 18745 mulGrpcmgp 20081 Unitcui 20301 βfldccnfld 21286 β€/nβ€czn 21435 DChrcdchr 27185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-1cn 11204 ax-addcl 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-nn 12251 df-slot 17158 df-ndx 17170 df-base 17188 df-dchr 27186 |
This theorem is referenced by: dchrmhm 27194 dchrf 27195 dchrelbas4 27196 dchrzrh1 27197 dchrzrhcl 27198 dchrzrhmul 27199 dchrmul 27201 dchrmulcl 27202 dchrn0 27203 dchrmullid 27205 dchrinvcl 27206 dchrghm 27209 dchrabs 27213 dchrinv 27214 dchrsum2 27221 dchrsum 27222 dchr2sum 27226 |
Copyright terms: Public domain | W3C validator |