| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| dchrrcl.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrrcl.b | ⊢ 𝐷 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| dchrrcl | ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dchr 27144 | . . 3 ⊢ DChr = (𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) | |
| 2 | 1 | dmmptss 6214 | . 2 ⊢ dom DChr ⊆ ℕ |
| 3 | n0i 4303 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅) | |
| 4 | dchrrcl.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
| 5 | ndmfv 6893 | . . . . 5 ⊢ (¬ 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅) | |
| 6 | 4, 5 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐺 = ∅) |
| 7 | fveq2 6858 | . . . . 5 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
| 8 | dchrrcl.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 9 | base0 17184 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 10 | 7, 8, 9 | 3eqtr4g 2789 | . . . 4 ⊢ (𝐺 = ∅ → 𝐷 = ∅) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐷 = ∅) |
| 12 | 3, 11 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr) |
| 13 | 2, 12 | sselid 3944 | 1 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ⦋csb 3862 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 {csn 4589 {cpr 4591 〈cop 4595 × cxp 5636 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 0cc0 11068 · cmul 11073 ℕcn 12186 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 MndHom cmhm 18708 mulGrpcmgp 20049 Unitcui 20264 ℂfldccnfld 21264 ℤ/nℤczn 21412 DChrcdchr 27143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-dchr 27144 |
| This theorem is referenced by: dchrmhm 27152 dchrf 27153 dchrelbas4 27154 dchrzrh1 27155 dchrzrhcl 27156 dchrzrhmul 27157 dchrmul 27159 dchrmulcl 27160 dchrn0 27161 dchrmullid 27163 dchrinvcl 27164 dchrghm 27167 dchrabs 27171 dchrinv 27172 dchrsum2 27179 dchrsum 27180 dchr2sum 27184 |
| Copyright terms: Public domain | W3C validator |