| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| dchrrcl.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrrcl.b | ⊢ 𝐷 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| dchrrcl | ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dchr 27196 | . . 3 ⊢ DChr = (𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) | |
| 2 | 1 | dmmptss 6230 | . 2 ⊢ dom DChr ⊆ ℕ |
| 3 | n0i 4315 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅) | |
| 4 | dchrrcl.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
| 5 | ndmfv 6911 | . . . . 5 ⊢ (¬ 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅) | |
| 6 | 4, 5 | eqtrid 2782 | . . . 4 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐺 = ∅) |
| 7 | fveq2 6876 | . . . . 5 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
| 8 | dchrrcl.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 9 | base0 17233 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 10 | 7, 8, 9 | 3eqtr4g 2795 | . . . 4 ⊢ (𝐺 = ∅ → 𝐷 = ∅) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐷 = ∅) |
| 12 | 3, 11 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr) |
| 13 | 2, 12 | sselid 3956 | 1 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 ⦋csb 3874 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 {csn 4601 {cpr 4603 〈cop 4607 × cxp 5652 dom cdm 5654 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 0cc0 11129 · cmul 11134 ℕcn 12240 ndxcnx 17212 Basecbs 17228 +gcplusg 17271 MndHom cmhm 18759 mulGrpcmgp 20100 Unitcui 20315 ℂfldccnfld 21315 ℤ/nℤczn 21463 DChrcdchr 27195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 df-dchr 27196 |
| This theorem is referenced by: dchrmhm 27204 dchrf 27205 dchrelbas4 27206 dchrzrh1 27207 dchrzrhcl 27208 dchrzrhmul 27209 dchrmul 27211 dchrmulcl 27212 dchrn0 27213 dchrmullid 27215 dchrinvcl 27216 dchrghm 27219 dchrabs 27223 dchrinv 27224 dchrsum2 27231 dchrsum 27232 dchr2sum 27236 |
| Copyright terms: Public domain | W3C validator |