![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dchrrcl.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrrcl.b | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrrcl | ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dchr 27295 | . . 3 ⊢ DChr = (𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) | |
2 | 1 | dmmptss 6272 | . 2 ⊢ dom DChr ⊆ ℕ |
3 | n0i 4363 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅) | |
4 | dchrrcl.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | ndmfv 6955 | . . . . 5 ⊢ (¬ 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅) | |
6 | 4, 5 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐺 = ∅) |
7 | fveq2 6920 | . . . . 5 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
8 | dchrrcl.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
9 | base0 17263 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
10 | 7, 8, 9 | 3eqtr4g 2805 | . . . 4 ⊢ (𝐺 = ∅ → 𝐷 = ∅) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐷 = ∅) |
12 | 3, 11 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr) |
13 | 2, 12 | sselid 4006 | 1 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ⦋csb 3921 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 {csn 4648 {cpr 4650 〈cop 4654 × cxp 5698 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 0cc0 11184 · cmul 11189 ℕcn 12293 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 MndHom cmhm 18816 mulGrpcmgp 20161 Unitcui 20381 ℂfldccnfld 21387 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-dchr 27295 |
This theorem is referenced by: dchrmhm 27303 dchrf 27304 dchrelbas4 27305 dchrzrh1 27306 dchrzrhcl 27307 dchrzrhmul 27308 dchrmul 27310 dchrmulcl 27311 dchrn0 27312 dchrmullid 27314 dchrinvcl 27315 dchrghm 27318 dchrabs 27322 dchrinv 27323 dchrsum2 27330 dchrsum 27331 dchr2sum 27335 |
Copyright terms: Public domain | W3C validator |