MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrrcl Structured version   Visualization version   GIF version

Theorem dchrrcl 27157
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
dchrrcl.g 𝐺 = (DChr‘𝑁)
dchrrcl.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrrcl (𝑋𝐷𝑁 ∈ ℕ)

Proof of Theorem dchrrcl
Dummy variables 𝑛 𝑏 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dchr 27150 . . 3 DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩})
21dmmptss 6216 . 2 dom DChr ⊆ ℕ
3 n0i 4305 . . 3 (𝑋𝐷 → ¬ 𝐷 = ∅)
4 dchrrcl.g . . . . 5 𝐺 = (DChr‘𝑁)
5 ndmfv 6895 . . . . 5 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅)
64, 5eqtrid 2777 . . . 4 𝑁 ∈ dom DChr → 𝐺 = ∅)
7 fveq2 6860 . . . . 5 (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅))
8 dchrrcl.b . . . . 5 𝐷 = (Base‘𝐺)
9 base0 17190 . . . . 5 ∅ = (Base‘∅)
107, 8, 93eqtr4g 2790 . . . 4 (𝐺 = ∅ → 𝐷 = ∅)
116, 10syl 17 . . 3 𝑁 ∈ dom DChr → 𝐷 = ∅)
123, 11nsyl2 141 . 2 (𝑋𝐷𝑁 ∈ dom DChr)
132, 12sselid 3946 1 (𝑋𝐷𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {crab 3408  csb 3864  cdif 3913  wss 3916  c0 4298  {csn 4591  {cpr 4593  cop 4597   × cxp 5638  dom cdm 5640  cres 5642  cfv 6513  (class class class)co 7389  f cof 7653  0cc0 11074   · cmul 11079  cn 12187  ndxcnx 17169  Basecbs 17185  +gcplusg 17226   MndHom cmhm 18714  mulGrpcmgp 20055  Unitcui 20270  fldccnfld 21270  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-1cn 11132  ax-addcl 11134
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-nn 12188  df-slot 17158  df-ndx 17170  df-base 17186  df-dchr 27150
This theorem is referenced by:  dchrmhm  27158  dchrf  27159  dchrelbas4  27160  dchrzrh1  27161  dchrzrhcl  27162  dchrzrhmul  27163  dchrmul  27165  dchrmulcl  27166  dchrn0  27167  dchrmullid  27169  dchrinvcl  27170  dchrghm  27173  dchrabs  27177  dchrinv  27178  dchrsum2  27185  dchrsum  27186  dchr2sum  27190
  Copyright terms: Public domain W3C validator