Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dchrrcl.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrrcl.b | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrrcl | ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dchr 26381 | . . 3 ⊢ DChr = (𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) | |
2 | 1 | dmmptss 6144 | . 2 ⊢ dom DChr ⊆ ℕ |
3 | n0i 4267 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅) | |
4 | dchrrcl.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | ndmfv 6804 | . . . . 5 ⊢ (¬ 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅) | |
6 | 4, 5 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐺 = ∅) |
7 | fveq2 6774 | . . . . 5 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
8 | dchrrcl.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
9 | base0 16917 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
10 | 7, 8, 9 | 3eqtr4g 2803 | . . . 4 ⊢ (𝐺 = ∅ → 𝐷 = ∅) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐷 = ∅) |
12 | 3, 11 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr) |
13 | 2, 12 | sselid 3919 | 1 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ⦋csb 3832 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 {csn 4561 {cpr 4563 〈cop 4567 × cxp 5587 dom cdm 5589 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 0cc0 10871 · cmul 10876 ℕcn 11973 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 MndHom cmhm 18428 mulGrpcmgp 19720 Unitcui 19881 ℂfldccnfld 20597 ℤ/nℤczn 20704 DChrcdchr 26380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 df-dchr 26381 |
This theorem is referenced by: dchrmhm 26389 dchrf 26390 dchrelbas4 26391 dchrzrh1 26392 dchrzrhcl 26393 dchrzrhmul 26394 dchrmul 26396 dchrmulcl 26397 dchrn0 26398 dchrmulid2 26400 dchrinvcl 26401 dchrghm 26404 dchrabs 26408 dchrinv 26409 dchrsum2 26416 dchrsum 26417 dchr2sum 26421 |
Copyright terms: Public domain | W3C validator |