MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrrcl Structured version   Visualization version   GIF version

Theorem dchrrcl 26388
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
dchrrcl.g 𝐺 = (DChr‘𝑁)
dchrrcl.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrrcl (𝑋𝐷𝑁 ∈ ℕ)

Proof of Theorem dchrrcl
Dummy variables 𝑛 𝑏 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dchr 26381 . . 3 DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩})
21dmmptss 6144 . 2 dom DChr ⊆ ℕ
3 n0i 4267 . . 3 (𝑋𝐷 → ¬ 𝐷 = ∅)
4 dchrrcl.g . . . . 5 𝐺 = (DChr‘𝑁)
5 ndmfv 6804 . . . . 5 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅)
64, 5eqtrid 2790 . . . 4 𝑁 ∈ dom DChr → 𝐺 = ∅)
7 fveq2 6774 . . . . 5 (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅))
8 dchrrcl.b . . . . 5 𝐷 = (Base‘𝐺)
9 base0 16917 . . . . 5 ∅ = (Base‘∅)
107, 8, 93eqtr4g 2803 . . . 4 (𝐺 = ∅ → 𝐷 = ∅)
116, 10syl 17 . . 3 𝑁 ∈ dom DChr → 𝐷 = ∅)
123, 11nsyl2 141 . 2 (𝑋𝐷𝑁 ∈ dom DChr)
132, 12sselid 3919 1 (𝑋𝐷𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  {crab 3068  csb 3832  cdif 3884  wss 3887  c0 4256  {csn 4561  {cpr 4563  cop 4567   × cxp 5587  dom cdm 5589  cres 5591  cfv 6433  (class class class)co 7275  f cof 7531  0cc0 10871   · cmul 10876  cn 11973  ndxcnx 16894  Basecbs 16912  +gcplusg 16962   MndHom cmhm 18428  mulGrpcmgp 19720  Unitcui 19881  fldccnfld 20597  ℤ/nczn 20704  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-slot 16883  df-ndx 16895  df-base 16913  df-dchr 26381
This theorem is referenced by:  dchrmhm  26389  dchrf  26390  dchrelbas4  26391  dchrzrh1  26392  dchrzrhcl  26393  dchrzrhmul  26394  dchrmul  26396  dchrmulcl  26397  dchrn0  26398  dchrmulid2  26400  dchrinvcl  26401  dchrghm  26404  dchrabs  26408  dchrinv  26409  dchrsum2  26416  dchrsum  26417  dchr2sum  26421
  Copyright terms: Public domain W3C validator