MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrrcl Structured version   Visualization version   GIF version

Theorem dchrrcl 27151
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
dchrrcl.g 𝐺 = (DChr‘𝑁)
dchrrcl.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrrcl (𝑋𝐷𝑁 ∈ ℕ)

Proof of Theorem dchrrcl
Dummy variables 𝑛 𝑏 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dchr 27144 . . 3 DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩})
21dmmptss 6214 . 2 dom DChr ⊆ ℕ
3 n0i 4303 . . 3 (𝑋𝐷 → ¬ 𝐷 = ∅)
4 dchrrcl.g . . . . 5 𝐺 = (DChr‘𝑁)
5 ndmfv 6893 . . . . 5 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅)
64, 5eqtrid 2776 . . . 4 𝑁 ∈ dom DChr → 𝐺 = ∅)
7 fveq2 6858 . . . . 5 (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅))
8 dchrrcl.b . . . . 5 𝐷 = (Base‘𝐺)
9 base0 17184 . . . . 5 ∅ = (Base‘∅)
107, 8, 93eqtr4g 2789 . . . 4 (𝐺 = ∅ → 𝐷 = ∅)
116, 10syl 17 . . 3 𝑁 ∈ dom DChr → 𝐷 = ∅)
123, 11nsyl2 141 . 2 (𝑋𝐷𝑁 ∈ dom DChr)
132, 12sselid 3944 1 (𝑋𝐷𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {crab 3405  csb 3862  cdif 3911  wss 3914  c0 4296  {csn 4589  {cpr 4591  cop 4595   × cxp 5636  dom cdm 5638  cres 5640  cfv 6511  (class class class)co 7387  f cof 7651  0cc0 11068   · cmul 11073  cn 12186  ndxcnx 17163  Basecbs 17179  +gcplusg 17220   MndHom cmhm 18708  mulGrpcmgp 20049  Unitcui 20264  fldccnfld 21264  ℤ/nczn 21412  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-dchr 27144
This theorem is referenced by:  dchrmhm  27152  dchrf  27153  dchrelbas4  27154  dchrzrh1  27155  dchrzrhcl  27156  dchrzrhmul  27157  dchrmul  27159  dchrmulcl  27160  dchrn0  27161  dchrmullid  27163  dchrinvcl  27164  dchrghm  27167  dchrabs  27171  dchrinv  27172  dchrsum2  27179  dchrsum  27180  dchr2sum  27184
  Copyright terms: Public domain W3C validator