![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dchrrcl.g | β’ πΊ = (DChrβπ) |
dchrrcl.b | β’ π· = (BaseβπΊ) |
Ref | Expression |
---|---|
dchrrcl | β’ (π β π· β π β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dchr 26733 | . . 3 β’ DChr = (π β β β¦ β¦(β€/nβ€βπ) / π§β¦β¦{π₯ β ((mulGrpβπ§) MndHom (mulGrpββfld)) β£ (((Baseβπ§) β (Unitβπ§)) Γ {0}) β π₯} / πβ¦{β¨(Baseβndx), πβ©, β¨(+gβndx), ( βf Β· βΎ (π Γ π))β©}) | |
2 | 1 | dmmptss 6240 | . 2 β’ dom DChr β β |
3 | n0i 4333 | . . 3 β’ (π β π· β Β¬ π· = β ) | |
4 | dchrrcl.g | . . . . 5 β’ πΊ = (DChrβπ) | |
5 | ndmfv 6926 | . . . . 5 β’ (Β¬ π β dom DChr β (DChrβπ) = β ) | |
6 | 4, 5 | eqtrid 2784 | . . . 4 β’ (Β¬ π β dom DChr β πΊ = β ) |
7 | fveq2 6891 | . . . . 5 β’ (πΊ = β β (BaseβπΊ) = (Baseββ )) | |
8 | dchrrcl.b | . . . . 5 β’ π· = (BaseβπΊ) | |
9 | base0 17148 | . . . . 5 β’ β = (Baseββ ) | |
10 | 7, 8, 9 | 3eqtr4g 2797 | . . . 4 β’ (πΊ = β β π· = β ) |
11 | 6, 10 | syl 17 | . . 3 β’ (Β¬ π β dom DChr β π· = β ) |
12 | 3, 11 | nsyl2 141 | . 2 β’ (π β π· β π β dom DChr) |
13 | 2, 12 | sselid 3980 | 1 β’ (π β π· β π β β) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1541 β wcel 2106 {crab 3432 β¦csb 3893 β cdif 3945 β wss 3948 β c0 4322 {csn 4628 {cpr 4630 β¨cop 4634 Γ cxp 5674 dom cdm 5676 βΎ cres 5678 βcfv 6543 (class class class)co 7408 βf cof 7667 0cc0 11109 Β· cmul 11114 βcn 12211 ndxcnx 17125 Basecbs 17143 +gcplusg 17196 MndHom cmhm 18668 mulGrpcmgp 19986 Unitcui 20168 βfldccnfld 20943 β€/nβ€czn 21051 DChrcdchr 26732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-slot 17114 df-ndx 17126 df-base 17144 df-dchr 26733 |
This theorem is referenced by: dchrmhm 26741 dchrf 26742 dchrelbas4 26743 dchrzrh1 26744 dchrzrhcl 26745 dchrzrhmul 26746 dchrmul 26748 dchrmulcl 26749 dchrn0 26750 dchrmullid 26752 dchrinvcl 26753 dchrghm 26756 dchrabs 26760 dchrinv 26761 dchrsum2 26768 dchrsum 26769 dchr2sum 26773 |
Copyright terms: Public domain | W3C validator |