| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| dchrrcl.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrrcl.b | ⊢ 𝐷 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| dchrrcl | ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dchr 27150 | . . 3 ⊢ DChr = (𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) | |
| 2 | 1 | dmmptss 6216 | . 2 ⊢ dom DChr ⊆ ℕ |
| 3 | n0i 4305 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅) | |
| 4 | dchrrcl.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
| 5 | ndmfv 6895 | . . . . 5 ⊢ (¬ 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅) | |
| 6 | 4, 5 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐺 = ∅) |
| 7 | fveq2 6860 | . . . . 5 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
| 8 | dchrrcl.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
| 9 | base0 17190 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 10 | 7, 8, 9 | 3eqtr4g 2790 | . . . 4 ⊢ (𝐺 = ∅ → 𝐷 = ∅) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐷 = ∅) |
| 12 | 3, 11 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr) |
| 13 | 2, 12 | sselid 3946 | 1 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ⦋csb 3864 ∖ cdif 3913 ⊆ wss 3916 ∅c0 4298 {csn 4591 {cpr 4593 〈cop 4597 × cxp 5638 dom cdm 5640 ↾ cres 5642 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 0cc0 11074 · cmul 11079 ℕcn 12187 ndxcnx 17169 Basecbs 17185 +gcplusg 17226 MndHom cmhm 18714 mulGrpcmgp 20055 Unitcui 20270 ℂfldccnfld 21270 ℤ/nℤczn 21418 DChrcdchr 27149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-1cn 11132 ax-addcl 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-nn 12188 df-slot 17158 df-ndx 17170 df-base 17186 df-dchr 27150 |
| This theorem is referenced by: dchrmhm 27158 dchrf 27159 dchrelbas4 27160 dchrzrh1 27161 dchrzrhcl 27162 dchrzrhmul 27163 dchrmul 27165 dchrmulcl 27166 dchrn0 27167 dchrmullid 27169 dchrinvcl 27170 dchrghm 27173 dchrabs 27177 dchrinv 27178 dchrsum2 27185 dchrsum 27186 dchr2sum 27190 |
| Copyright terms: Public domain | W3C validator |