Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dchrrcl.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrrcl.b | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrrcl | ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dchr 26286 | . . 3 ⊢ DChr = (𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) | |
2 | 1 | dmmptss 6133 | . 2 ⊢ dom DChr ⊆ ℕ |
3 | n0i 4264 | . . 3 ⊢ (𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅) | |
4 | dchrrcl.g | . . . . 5 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | ndmfv 6786 | . . . . 5 ⊢ (¬ 𝑁 ∈ dom DChr → (DChr‘𝑁) = ∅) | |
6 | 4, 5 | syl5eq 2791 | . . . 4 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐺 = ∅) |
7 | fveq2 6756 | . . . . 5 ⊢ (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅)) | |
8 | dchrrcl.b | . . . . 5 ⊢ 𝐷 = (Base‘𝐺) | |
9 | base0 16845 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
10 | 7, 8, 9 | 3eqtr4g 2804 | . . . 4 ⊢ (𝐺 = ∅ → 𝐷 = ∅) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (¬ 𝑁 ∈ dom DChr → 𝐷 = ∅) |
12 | 3, 11 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr) |
13 | 2, 12 | sselid 3915 | 1 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ⦋csb 3828 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 {csn 4558 {cpr 4560 〈cop 4564 × cxp 5578 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 0cc0 10802 · cmul 10807 ℕcn 11903 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 MndHom cmhm 18343 mulGrpcmgp 19635 Unitcui 19796 ℂfldccnfld 20510 ℤ/nℤczn 20616 DChrcdchr 26285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 df-dchr 26286 |
This theorem is referenced by: dchrmhm 26294 dchrf 26295 dchrelbas4 26296 dchrzrh1 26297 dchrzrhcl 26298 dchrzrhmul 26299 dchrmul 26301 dchrmulcl 26302 dchrn0 26303 dchrmulid2 26305 dchrinvcl 26306 dchrghm 26309 dchrabs 26313 dchrinv 26314 dchrsum2 26321 dchrsum 26322 dchr2sum 26326 |
Copyright terms: Public domain | W3C validator |