MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssntr Structured version   Visualization version   GIF version

Theorem ssntr 22961
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ssntr (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3921 . . . . 5 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂𝐽𝑂 ∈ 𝒫 𝑆))
2 elpwg 4556 . . . . . 6 (𝑂𝐽 → (𝑂 ∈ 𝒫 𝑆𝑂𝑆))
32pm5.32i 574 . . . . 5 ((𝑂𝐽𝑂 ∈ 𝒫 𝑆) ↔ (𝑂𝐽𝑂𝑆))
41, 3bitr2i 276 . . . 4 ((𝑂𝐽𝑂𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆))
5 elssuni 4891 . . . 4 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
64, 5sylbi 217 . . 3 ((𝑂𝐽𝑂𝑆) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
76adantl 481 . 2 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
8 clscld.1 . . . 4 𝑋 = 𝐽
98ntrval 22939 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
109adantr 480 . 2 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
117, 10sseqtrrd 3975 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861  cfv 6486  Topctop 22796  intcnt 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22797  df-ntr 22923
This theorem is referenced by:  ntrin  22964  neiint  23007  restntr  23085  cnntri  23174  xkococnlem  23562  iccntr  24726  bcthlem5  25244  ftc1  25965  lgamucov  26964  cvmlift2lem12  35289  cvmlift3lem7  35300  opnregcld  36306  ftc1cnnc  37674
  Copyright terms: Public domain W3C validator