![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssntr | Structured version Visualization version GIF version |
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ssntr | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3979 | . . . . 5 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆)) | |
2 | elpwg 4608 | . . . . . 6 ⊢ (𝑂 ∈ 𝐽 → (𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 ⊆ 𝑆)) | |
3 | 2 | pm5.32i 574 | . . . . 5 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) |
4 | 1, 3 | bitr2i 276 | . . . 4 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆)) |
5 | elssuni 4942 | . . . 4 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
6 | 4, 5 | sylbi 217 | . . 3 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
7 | 6 | adantl 481 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
8 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
9 | 8 | ntrval 23060 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
10 | 9 | adantr 480 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
11 | 7, 10 | sseqtrrd 4037 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 ‘cfv 6563 Topctop 22915 intcnt 23041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-top 22916 df-ntr 23044 |
This theorem is referenced by: ntrin 23085 neiint 23128 restntr 23206 cnntri 23295 xkococnlem 23683 iccntr 24857 bcthlem5 25376 ftc1 26098 lgamucov 27096 cvmlift2lem12 35299 cvmlift3lem7 35310 opnregcld 36313 ftc1cnnc 37679 |
Copyright terms: Public domain | W3C validator |