| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssntr | Structured version Visualization version GIF version | ||
| Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ssntr | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3967 | . . . . 5 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆)) | |
| 2 | elpwg 4603 | . . . . . 6 ⊢ (𝑂 ∈ 𝐽 → (𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 ⊆ 𝑆)) | |
| 3 | 2 | pm5.32i 574 | . . . . 5 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) |
| 4 | 1, 3 | bitr2i 276 | . . . 4 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆)) |
| 5 | elssuni 4937 | . . . 4 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
| 6 | 4, 5 | sylbi 217 | . . 3 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 8 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 9 | 8 | ntrval 23044 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 10 | 9 | adantr 480 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 11 | 7, 10 | sseqtrrd 4021 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 ‘cfv 6561 Topctop 22899 intcnt 23025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-top 22900 df-ntr 23028 |
| This theorem is referenced by: ntrin 23069 neiint 23112 restntr 23190 cnntri 23279 xkococnlem 23667 iccntr 24843 bcthlem5 25362 ftc1 26083 lgamucov 27081 cvmlift2lem12 35319 cvmlift3lem7 35330 opnregcld 36331 ftc1cnnc 37699 |
| Copyright terms: Public domain | W3C validator |