MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssntr Structured version   Visualization version   GIF version

Theorem ssntr 22882
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ssntr (((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 βŠ† 𝑆)) β†’ 𝑂 βŠ† ((intβ€˜π½)β€˜π‘†))

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3964 . . . . 5 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆))
2 elpwg 4605 . . . . . 6 (𝑂 ∈ 𝐽 β†’ (𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 βŠ† 𝑆))
32pm5.32i 574 . . . . 5 ((𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 βŠ† 𝑆))
41, 3bitr2i 276 . . . 4 ((𝑂 ∈ 𝐽 ∧ 𝑂 βŠ† 𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆))
5 elssuni 4941 . . . 4 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) β†’ 𝑂 βŠ† βˆͺ (𝐽 ∩ 𝒫 𝑆))
64, 5sylbi 216 . . 3 ((𝑂 ∈ 𝐽 ∧ 𝑂 βŠ† 𝑆) β†’ 𝑂 βŠ† βˆͺ (𝐽 ∩ 𝒫 𝑆))
76adantl 481 . 2 (((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 βŠ† 𝑆)) β†’ 𝑂 βŠ† βˆͺ (𝐽 ∩ 𝒫 𝑆))
8 clscld.1 . . . 4 𝑋 = βˆͺ 𝐽
98ntrval 22860 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) = βˆͺ (𝐽 ∩ 𝒫 𝑆))
109adantr 480 . 2 (((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 βŠ† 𝑆)) β†’ ((intβ€˜π½)β€˜π‘†) = βˆͺ (𝐽 ∩ 𝒫 𝑆))
117, 10sseqtrrd 4023 1 (((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 βŠ† 𝑆)) β†’ 𝑂 βŠ† ((intβ€˜π½)β€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22715  intcnt 22841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22716  df-ntr 22844
This theorem is referenced by:  ntrin  22885  neiint  22928  restntr  23006  cnntri  23095  xkococnlem  23483  iccntr  24657  bcthlem5  25176  ftc1  25897  lgamucov  26883  cvmlift2lem12  34769  cvmlift3lem7  34780  opnregcld  35679  ftc1cnnc  37024
  Copyright terms: Public domain W3C validator