| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssntr | Structured version Visualization version GIF version | ||
| Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ssntr | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3930 | . . . . 5 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆)) | |
| 2 | elpwg 4566 | . . . . . 6 ⊢ (𝑂 ∈ 𝐽 → (𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 ⊆ 𝑆)) | |
| 3 | 2 | pm5.32i 574 | . . . . 5 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) |
| 4 | 1, 3 | bitr2i 276 | . . . 4 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆)) |
| 5 | elssuni 4901 | . . . 4 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
| 6 | 4, 5 | sylbi 217 | . . 3 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 8 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 9 | 8 | ntrval 22923 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 10 | 9 | adantr 480 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 11 | 7, 10 | sseqtrrd 3984 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 intcnt 22904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-top 22781 df-ntr 22907 |
| This theorem is referenced by: ntrin 22948 neiint 22991 restntr 23069 cnntri 23158 xkococnlem 23546 iccntr 24710 bcthlem5 25228 ftc1 25949 lgamucov 26948 cvmlift2lem12 35301 cvmlift3lem7 35312 opnregcld 36318 ftc1cnnc 37686 |
| Copyright terms: Public domain | W3C validator |