Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssntr | Structured version Visualization version GIF version |
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ssntr | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . . . 5 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆)) | |
2 | elpwg 4533 | . . . . . 6 ⊢ (𝑂 ∈ 𝐽 → (𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 ⊆ 𝑆)) | |
3 | 2 | pm5.32i 574 | . . . . 5 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) |
4 | 1, 3 | bitr2i 275 | . . . 4 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆)) |
5 | elssuni 4868 | . . . 4 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
6 | 4, 5 | sylbi 216 | . . 3 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
7 | 6 | adantl 481 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
8 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
9 | 8 | ntrval 22095 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
10 | 9 | adantr 480 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
11 | 7, 10 | sseqtrrd 3958 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 intcnt 22076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-ntr 22079 |
This theorem is referenced by: ntrin 22120 neiint 22163 restntr 22241 cnntri 22330 xkococnlem 22718 iccntr 23890 bcthlem5 24397 ftc1 25111 lgamucov 26092 cvmlift2lem12 33176 cvmlift3lem7 33187 opnregcld 34446 ftc1cnnc 35776 |
Copyright terms: Public domain | W3C validator |