![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvpncan | Structured version Visualization version GIF version |
Description: Cancellation law for vector subtraction. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvpncan2.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvpncan | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvpncan2.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvpncan2.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | 1, 2 | nvcom 30549 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐺𝐴) = (𝐴𝐺𝐵)) |
4 | 3 | oveq1d 7429 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵𝐺𝐴)𝑀𝐵) = ((𝐴𝐺𝐵)𝑀𝐵)) |
5 | nvpncan2.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
6 | 1, 2, 5 | nvpncan2 30581 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵𝐺𝐴)𝑀𝐵) = 𝐴) |
7 | 4, 6 | eqtr3d 2768 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐵) = 𝐴) |
8 | 7 | 3com23 1123 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6544 (class class class)co 7414 NrmCVeccnv 30512 +𝑣 cpv 30513 BaseSetcba 30514 −𝑣 cnsb 30517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-ltxr 11292 df-sub 11485 df-neg 11486 df-grpo 30421 df-gid 30422 df-ginv 30423 df-gdiv 30424 df-ablo 30473 df-vc 30487 df-nv 30520 df-va 30523 df-ba 30524 df-sm 30525 df-0v 30526 df-vs 30527 df-nmcv 30528 |
This theorem is referenced by: nvnpcan 30584 |
Copyright terms: Public domain | W3C validator |