| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundge | Structured version Visualization version GIF version | ||
| Description: Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| Ref | Expression |
|---|---|
| pellfundge | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4046 | . . . 4 ⊢ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷) | |
| 2 | pell14qrre 42852 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ) | |
| 3 | 2 | ex 412 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ)) |
| 4 | 3 | ssrdv 3955 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ) |
| 5 | 1, 4 | sstrid 3961 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ) |
| 6 | pell1qrss14 42863 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) | |
| 7 | pellqrex 42874 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎) | |
| 8 | ssrexv 4019 | . . . . 5 ⊢ ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)) | |
| 9 | 6, 7, 8 | sylc 65 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) |
| 10 | rabn0 4355 | . . . 4 ⊢ ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅) |
| 12 | eldifi 4097 | . . . . . . . 8 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
| 13 | 12 | peano2nnd 12210 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
| 14 | 13 | nnrpd 13000 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
| 15 | 14 | rpsqrtcld 15385 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
| 16 | 15 | rpred 13002 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
| 17 | 12 | nnrpd 13000 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
| 18 | 17 | rpsqrtcld 15385 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
| 19 | 18 | rpred 13002 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
| 20 | 16, 19 | readdcld 11210 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
| 21 | breq2 5114 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (1 < 𝑎 ↔ 1 < 𝑏)) | |
| 22 | 21 | elrab 3662 | . . . . 5 ⊢ (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏)) |
| 23 | pell14qrgap 42870 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) | |
| 24 | 23 | 3expib 1122 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)) |
| 25 | 22, 24 | biimtrid 242 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)) |
| 26 | 25 | ralrimiv 3125 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) |
| 27 | infmrgelbi 42873 | . . 3 ⊢ ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) ∧ ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
| 28 | 5, 11, 20, 26, 27 | syl31anc 1375 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) |
| 29 | pellfundval 42875 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
| 30 | 28, 29 | breqtrrd 5138 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 infcinf 9399 ℝcr 11074 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 ℕcn 12193 √csqrt 15206 ◻NNcsquarenn 42831 Pell1QRcpell1qr 42832 Pell14QRcpell14qr 42834 PellFundcpellfund 42835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ico 13319 df-fz 13476 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-numer 16712 df-denom 16713 df-squarenn 42836 df-pell1qr 42837 df-pell14qr 42838 df-pell1234qr 42839 df-pellfund 42840 |
| This theorem is referenced by: pellfundgt1 42878 rmspecfund 42904 |
| Copyright terms: Public domain | W3C validator |