Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundge Structured version   Visualization version   GIF version

Theorem pellfundge 42905
Description: Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfundge (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))

Proof of Theorem pellfundge
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . . 4 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
2 pell14qrre 42880 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
32ex 412 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ))
43ssrdv 3964 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
51, 4sstrid 3970 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
6 pell1qrss14 42891 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
7 pellqrex 42902 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
8 ssrexv 4028 . . . . 5 ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎))
96, 7, 8sylc 65 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
10 rabn0 4364 . . . 4 ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
119, 10sylibr 234 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅)
12 eldifi 4106 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
1312peano2nnd 12257 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ)
1413nnrpd 13049 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+)
1514rpsqrtcld 15430 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+)
1615rpred 13051 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ)
1712nnrpd 13049 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+)
1817rpsqrtcld 15430 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+)
1918rpred 13051 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ)
2016, 19readdcld 11264 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ)
21 breq2 5123 . . . . . 6 (𝑎 = 𝑏 → (1 < 𝑎 ↔ 1 < 𝑏))
2221elrab 3671 . . . . 5 (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏))
23 pell14qrgap 42898 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)
24233expib 1122 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏))
2522, 24biimtrid 242 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏))
2625ralrimiv 3131 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)
27 infmrgelbi 42901 . . 3 ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) ∧ ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
285, 11, 20, 26, 27syl31anc 1375 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
29 pellfundval 42903 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3028, 29breqtrrd 5147 1 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  cdif 3923  wss 3926  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405  infcinf 9453  cr 11128  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cn 12240  csqrt 15252  NNcsquarenn 42859  Pell1QRcpell1qr 42860  Pell14QRcpell14qr 42862  PellFundcpellfund 42863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-ico 13368  df-fz 13525  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-numer 16754  df-denom 16755  df-squarenn 42864  df-pell1qr 42865  df-pell14qr 42866  df-pell1234qr 42867  df-pellfund 42868
This theorem is referenced by:  pellfundgt1  42906  rmspecfund  42932
  Copyright terms: Public domain W3C validator