Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundge Structured version   Visualization version   GIF version

Theorem pellfundge 40197
 Description: Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfundge (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))

Proof of Theorem pellfundge
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3985 . . . 4 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
2 pell14qrre 40172 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
32ex 417 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ))
43ssrdv 3899 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
51, 4sstrid 3904 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
6 pell1qrss14 40183 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
7 pellqrex 40194 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
8 ssrexv 3960 . . . . 5 ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎))
96, 7, 8sylc 65 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
10 rabn0 4282 . . . 4 ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
119, 10sylibr 237 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅)
12 eldifi 4033 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
1312peano2nnd 11692 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ)
1413nnrpd 12471 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+)
1514rpsqrtcld 14820 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+)
1615rpred 12473 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ)
1712nnrpd 12471 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+)
1817rpsqrtcld 14820 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+)
1918rpred 12473 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ)
2016, 19readdcld 10709 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ)
21 breq2 5037 . . . . . 6 (𝑎 = 𝑏 → (1 < 𝑎 ↔ 1 < 𝑏))
2221elrab 3603 . . . . 5 (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏))
23 pell14qrgap 40190 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)
24233expib 1120 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏))
2522, 24syl5bi 245 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏))
2625ralrimiv 3113 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)
27 infmrgelbi 40193 . . 3 ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) ∧ ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
285, 11, 20, 26, 27syl31anc 1371 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
29 pellfundval 40195 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3028, 29breqtrrd 5061 1 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  ∃wrex 3072  {crab 3075   ∖ cdif 3856   ⊆ wss 3859  ∅c0 4226   class class class wbr 5033  ‘cfv 6336  (class class class)co 7151  infcinf 8939  ℝcr 10575  1c1 10577   + caddc 10579   < clt 10714   ≤ cle 10715  ℕcn 11675  √csqrt 14641  ◻NNcsquarenn 40151  Pell1QRcpell1qr 40152  Pell14QRcpell14qr 40154  PellFundcpellfund 40155 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9138  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-omul 8118  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8940  df-inf 8941  df-oi 9008  df-card 9402  df-acn 9405  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-n0 11936  df-xnn0 12008  df-z 12022  df-uz 12284  df-q 12390  df-rp 12432  df-ico 12786  df-fz 12941  df-fl 13212  df-mod 13288  df-seq 13420  df-exp 13481  df-hash 13742  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-dvds 15657  df-gcd 15895  df-numer 16131  df-denom 16132  df-squarenn 40156  df-pell1qr 40157  df-pell14qr 40158  df-pell1234qr 40159  df-pellfund 40160 This theorem is referenced by:  pellfundgt1  40198  rmspecfund  40224
 Copyright terms: Public domain W3C validator