![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundge | Structured version Visualization version GIF version |
Description: Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
pellfundge | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4089 | . . . 4 ⊢ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷) | |
2 | pell14qrre 42844 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ) | |
3 | 2 | ex 412 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ)) |
4 | 3 | ssrdv 4000 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ) |
5 | 1, 4 | sstrid 4006 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ) |
6 | pell1qrss14 42855 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) | |
7 | pellqrex 42866 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎) | |
8 | ssrexv 4064 | . . . . 5 ⊢ ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)) | |
9 | 6, 7, 8 | sylc 65 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) |
10 | rabn0 4394 | . . . 4 ⊢ ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) | |
11 | 9, 10 | sylibr 234 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅) |
12 | eldifi 4140 | . . . . . . . 8 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
13 | 12 | peano2nnd 12280 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
14 | 13 | nnrpd 13072 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
15 | 14 | rpsqrtcld 15446 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
16 | 15 | rpred 13074 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
17 | 12 | nnrpd 13072 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
18 | 17 | rpsqrtcld 15446 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
19 | 18 | rpred 13074 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
20 | 16, 19 | readdcld 11287 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
21 | breq2 5151 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (1 < 𝑎 ↔ 1 < 𝑏)) | |
22 | 21 | elrab 3694 | . . . . 5 ⊢ (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏)) |
23 | pell14qrgap 42862 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) | |
24 | 23 | 3expib 1121 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)) |
25 | 22, 24 | biimtrid 242 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)) |
26 | 25 | ralrimiv 3142 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) |
27 | infmrgelbi 42865 | . . 3 ⊢ ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) ∧ ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
28 | 5, 11, 20, 26, 27 | syl31anc 1372 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) |
29 | pellfundval 42867 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
30 | 28, 29 | breqtrrd 5175 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 {crab 3432 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 infcinf 9478 ℝcr 11151 1c1 11153 + caddc 11155 < clt 11292 ≤ cle 11293 ℕcn 12263 √csqrt 15268 ◻NNcsquarenn 42823 Pell1QRcpell1qr 42824 Pell14QRcpell14qr 42826 PellFundcpellfund 42827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oadd 8508 df-omul 8509 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-acn 9979 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-xnn0 12597 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-ico 13389 df-fz 13544 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-gcd 16528 df-numer 16768 df-denom 16769 df-squarenn 42828 df-pell1qr 42829 df-pell14qr 42830 df-pell1234qr 42831 df-pellfund 42832 |
This theorem is referenced by: pellfundgt1 42870 rmspecfund 42896 |
Copyright terms: Public domain | W3C validator |