Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundlb Structured version   Visualization version   GIF version

Theorem pellfundlb 38987
Description: A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 15-Sep-2020.)
Assertion
Ref Expression
pellfundlb ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)

Proof of Theorem pellfundlb
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellfundval 38983 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
213ad2ant1 1126 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3 ssrab2 3983 . . . . 5 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
4 pell14qrre 38960 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑑 ∈ (Pell14QR‘𝐷)) → 𝑑 ∈ ℝ)
54ex 413 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑑 ∈ (Pell14QR‘𝐷) → 𝑑 ∈ ℝ))
65ssrdv 3901 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
73, 6sstrid 3906 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
873ad2ant1 1126 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
9 1re 10494 . . . 4 1 ∈ ℝ
10 breq2 4972 . . . . . . . 8 (𝑎 = 𝑐 → (1 < 𝑎 ↔ 1 < 𝑐))
1110elrab 3621 . . . . . . 7 (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐))
12 pell14qrre 38960 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → 𝑐 ∈ ℝ)
13 ltle 10582 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (1 < 𝑐 → 1 ≤ 𝑐))
149, 12, 13sylancr 587 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → (1 < 𝑐 → 1 ≤ 𝑐))
1514expimpd 454 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐) → 1 ≤ 𝑐))
1611, 15syl5bi 243 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 ≤ 𝑐))
1716ralrimiv 3150 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐)
18173ad2ant1 1126 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐)
19 breq1 4971 . . . . . 6 (𝑏 = 1 → (𝑏𝑐 ↔ 1 ≤ 𝑐))
2019ralbidv 3166 . . . . 5 (𝑏 = 1 → (∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐 ↔ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐))
2120rspcev 3561 . . . 4 ((1 ∈ ℝ ∧ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐)
229, 18, 21sylancr 587 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐)
23 simp2 1130 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell14QR‘𝐷))
24 simp3 1131 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 1 < 𝐴)
25 breq2 4972 . . . . 5 (𝑎 = 𝐴 → (1 < 𝑎 ↔ 1 < 𝐴))
2625elrab 3621 . . . 4 (𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴))
2723, 24, 26sylanbrc 583 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎})
28 infrelb 11480 . . 3 (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ≤ 𝐴)
298, 22, 27, 28syl3anc 1364 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ≤ 𝐴)
302, 29eqbrtrd 4990 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  wral 3107  wrex 3108  {crab 3111  cdif 3862  wss 3865   class class class wbr 4968  cfv 6232  infcinf 8758  cr 10389  1c1 10391   < clt 10528  cle 10529  cn 11492  NNcsquarenn 38939  Pell14QRcpell14qr 38942  PellFundcpellfund 38943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-n0 11752  df-z 11836  df-pell14qr 38946  df-pell1234qr 38947  df-pellfund 38948
This theorem is referenced by:  pellfundglb  38988  pellfund14gap  38990  rmspecfund  39012
  Copyright terms: Public domain W3C validator