| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundlb | Structured version Visualization version GIF version | ||
| Description: A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 15-Sep-2020.) |
| Ref | Expression |
|---|---|
| pellfundlb | ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pellfundval 42997 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) |
| 3 | ssrab2 4029 | . . . . 5 ⊢ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷) | |
| 4 | pell14qrre 42974 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑑 ∈ (Pell14QR‘𝐷)) → 𝑑 ∈ ℝ) | |
| 5 | 4 | ex 412 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑑 ∈ (Pell14QR‘𝐷) → 𝑑 ∈ ℝ)) |
| 6 | 5 | ssrdv 3936 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ) |
| 7 | 3, 6 | sstrid 3942 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ) |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ) |
| 9 | 1re 11119 | . . . 4 ⊢ 1 ∈ ℝ | |
| 10 | breq2 5097 | . . . . . . . 8 ⊢ (𝑎 = 𝑐 → (1 < 𝑎 ↔ 1 < 𝑐)) | |
| 11 | 10 | elrab 3643 | . . . . . . 7 ⊢ (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐)) |
| 12 | pell14qrre 42974 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → 𝑐 ∈ ℝ) | |
| 13 | ltle 11208 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (1 < 𝑐 → 1 ≤ 𝑐)) | |
| 14 | 9, 12, 13 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → (1 < 𝑐 → 1 ≤ 𝑐)) |
| 15 | 14 | expimpd 453 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐) → 1 ≤ 𝑐)) |
| 16 | 11, 15 | biimtrid 242 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 ≤ 𝑐)) |
| 17 | 16 | ralrimiv 3124 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐) |
| 18 | 17 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐) |
| 19 | breq1 5096 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏 ≤ 𝑐 ↔ 1 ≤ 𝑐)) | |
| 20 | 19 | ralbidv 3156 | . . . . 5 ⊢ (𝑏 = 1 → (∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐 ↔ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐)) |
| 21 | 20 | rspcev 3573 | . . . 4 ⊢ ((1 ∈ ℝ ∧ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐) |
| 22 | 9, 18, 21 | sylancr 587 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐) |
| 23 | simp2 1137 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell14QR‘𝐷)) | |
| 24 | simp3 1138 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 1 < 𝐴) | |
| 25 | breq2 5097 | . . . . 5 ⊢ (𝑎 = 𝐴 → (1 < 𝑎 ↔ 1 < 𝐴)) | |
| 26 | 25 | elrab 3643 | . . . 4 ⊢ (𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴)) |
| 27 | 23, 24, 26 | sylanbrc 583 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) |
| 28 | infrelb 12114 | . . 3 ⊢ (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐 ∧ 𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ≤ 𝐴) | |
| 29 | 8, 22, 27, 28 | syl3anc 1373 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ≤ 𝐴) |
| 30 | 2, 29 | eqbrtrd 5115 | 1 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 {crab 3396 ∖ cdif 3895 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6486 infcinf 9332 ℝcr 11012 1c1 11014 < clt 11153 ≤ cle 11154 ℕcn 12132 ◻NNcsquarenn 42953 Pell14QRcpell14qr 42956 PellFundcpellfund 42957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-pell14qr 42960 df-pell1234qr 42961 df-pellfund 42962 |
| This theorem is referenced by: pellfundglb 43002 pellfund14gap 43004 rmspecfund 43026 |
| Copyright terms: Public domain | W3C validator |