![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundre | Structured version Visualization version GIF version |
Description: The fundamental solution of a Pell equation exists as a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
Ref | Expression |
---|---|
pellfundre | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pellfundval 42836 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
2 | ssrab2 4103 | . . . 4 ⊢ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷) | |
3 | pell14qrre 42813 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ) | |
4 | 3 | ex 412 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ)) |
5 | 4 | ssrdv 4014 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ) |
6 | 2, 5 | sstrid 4020 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ) |
7 | pell1qrss14 42824 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) | |
8 | pellqrex 42835 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎) | |
9 | ssrexv 4078 | . . . . 5 ⊢ ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)) | |
10 | 7, 8, 9 | sylc 65 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) |
11 | rabn0 4412 | . . . 4 ⊢ ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) | |
12 | 10, 11 | sylibr 234 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅) |
13 | 1re 11290 | . . . 4 ⊢ 1 ∈ ℝ | |
14 | breq2 5170 | . . . . . . 7 ⊢ (𝑎 = 𝑐 → (1 < 𝑎 ↔ 1 < 𝑐)) | |
15 | 14 | elrab 3708 | . . . . . 6 ⊢ (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐)) |
16 | pell14qrre 42813 | . . . . . . . 8 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → 𝑐 ∈ ℝ) | |
17 | ltle 11378 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (1 < 𝑐 → 1 ≤ 𝑐)) | |
18 | 13, 16, 17 | sylancr 586 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → (1 < 𝑐 → 1 ≤ 𝑐)) |
19 | 18 | expimpd 453 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐) → 1 ≤ 𝑐)) |
20 | 15, 19 | biimtrid 242 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 ≤ 𝑐)) |
21 | 20 | ralrimiv 3151 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐) |
22 | breq1 5169 | . . . . . 6 ⊢ (𝑏 = 1 → (𝑏 ≤ 𝑐 ↔ 1 ≤ 𝑐)) | |
23 | 22 | ralbidv 3184 | . . . . 5 ⊢ (𝑏 = 1 → (∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐 ↔ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐)) |
24 | 23 | rspcev 3635 | . . . 4 ⊢ ((1 ∈ ℝ ∧ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐) |
25 | 13, 21, 24 | sylancr 586 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐) |
26 | infrecl 12277 | . . 3 ⊢ (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏 ≤ 𝑐) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ∈ ℝ) | |
27 | 6, 12, 25, 26 | syl3anc 1371 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ∈ ℝ) |
28 | 1, 27 | eqeltrd 2844 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 infcinf 9510 ℝcr 11183 1c1 11185 < clt 11324 ≤ cle 11325 ℕcn 12293 ◻NNcsquarenn 42792 Pell1QRcpell1qr 42793 Pell14QRcpell14qr 42795 PellFundcpellfund 42796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-ico 13413 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-numer 16782 df-denom 16783 df-squarenn 42797 df-pell1qr 42798 df-pell14qr 42799 df-pell1234qr 42800 df-pellfund 42801 |
This theorem is referenced by: pellfundgt1 42839 pellfundglb 42841 pellfundex 42842 pellfund14gap 42843 pellfundrp 42844 rmspecfund 42865 |
Copyright terms: Public domain | W3C validator |