MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpar2 Structured version   Visualization version   GIF version

Theorem phpar2 30076
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1 𝑋 = (BaseSetβ€˜π‘ˆ)
isph.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
isph.3 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
isph.6 𝑁 = (normCVβ€˜π‘ˆ)
Assertion
Ref Expression
phpar2 ((π‘ˆ ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝑀𝐡))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2))))

Proof of Theorem phpar2
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isph.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
2 isph.2 . . . . 5 𝐺 = ( +𝑣 β€˜π‘ˆ)
3 isph.3 . . . . 5 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
4 isph.6 . . . . 5 𝑁 = (normCVβ€˜π‘ˆ)
51, 2, 3, 4isph 30075 . . . 4 (π‘ˆ ∈ CPreHilOLD ↔ (π‘ˆ ∈ NrmCVec ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2)))))
65simprbi 498 . . 3 (π‘ˆ ∈ CPreHilOLD β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2))))
763ad2ant1 1134 . 2 ((π‘ˆ ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2))))
8 fvoveq1 7432 . . . . . . 7 (π‘₯ = 𝐴 β†’ (π‘β€˜(π‘₯𝐺𝑦)) = (π‘β€˜(𝐴𝐺𝑦)))
98oveq1d 7424 . . . . . 6 (π‘₯ = 𝐴 β†’ ((π‘β€˜(π‘₯𝐺𝑦))↑2) = ((π‘β€˜(𝐴𝐺𝑦))↑2))
10 fvoveq1 7432 . . . . . . 7 (π‘₯ = 𝐴 β†’ (π‘β€˜(π‘₯𝑀𝑦)) = (π‘β€˜(𝐴𝑀𝑦)))
1110oveq1d 7424 . . . . . 6 (π‘₯ = 𝐴 β†’ ((π‘β€˜(π‘₯𝑀𝑦))↑2) = ((π‘β€˜(𝐴𝑀𝑦))↑2))
129, 11oveq12d 7427 . . . . 5 (π‘₯ = 𝐴 β†’ (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (((π‘β€˜(𝐴𝐺𝑦))↑2) + ((π‘β€˜(𝐴𝑀𝑦))↑2)))
13 fveq2 6892 . . . . . . . 8 (π‘₯ = 𝐴 β†’ (π‘β€˜π‘₯) = (π‘β€˜π΄))
1413oveq1d 7424 . . . . . . 7 (π‘₯ = 𝐴 β†’ ((π‘β€˜π‘₯)↑2) = ((π‘β€˜π΄)↑2))
1514oveq1d 7424 . . . . . 6 (π‘₯ = 𝐴 β†’ (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2)) = (((π‘β€˜π΄)↑2) + ((π‘β€˜π‘¦)↑2)))
1615oveq2d 7425 . . . . 5 (π‘₯ = 𝐴 β†’ (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2))) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π‘¦)↑2))))
1712, 16eqeq12d 2749 . . . 4 (π‘₯ = 𝐴 β†’ ((((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2))) ↔ (((π‘β€˜(𝐴𝐺𝑦))↑2) + ((π‘β€˜(𝐴𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π‘¦)↑2)))))
18 oveq2 7417 . . . . . . . 8 (𝑦 = 𝐡 β†’ (𝐴𝐺𝑦) = (𝐴𝐺𝐡))
1918fveq2d 6896 . . . . . . 7 (𝑦 = 𝐡 β†’ (π‘β€˜(𝐴𝐺𝑦)) = (π‘β€˜(𝐴𝐺𝐡)))
2019oveq1d 7424 . . . . . 6 (𝑦 = 𝐡 β†’ ((π‘β€˜(𝐴𝐺𝑦))↑2) = ((π‘β€˜(𝐴𝐺𝐡))↑2))
21 oveq2 7417 . . . . . . . 8 (𝑦 = 𝐡 β†’ (𝐴𝑀𝑦) = (𝐴𝑀𝐡))
2221fveq2d 6896 . . . . . . 7 (𝑦 = 𝐡 β†’ (π‘β€˜(𝐴𝑀𝑦)) = (π‘β€˜(𝐴𝑀𝐡)))
2322oveq1d 7424 . . . . . 6 (𝑦 = 𝐡 β†’ ((π‘β€˜(𝐴𝑀𝑦))↑2) = ((π‘β€˜(𝐴𝑀𝐡))↑2))
2420, 23oveq12d 7427 . . . . 5 (𝑦 = 𝐡 β†’ (((π‘β€˜(𝐴𝐺𝑦))↑2) + ((π‘β€˜(𝐴𝑀𝑦))↑2)) = (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝑀𝐡))↑2)))
25 fveq2 6892 . . . . . . . 8 (𝑦 = 𝐡 β†’ (π‘β€˜π‘¦) = (π‘β€˜π΅))
2625oveq1d 7424 . . . . . . 7 (𝑦 = 𝐡 β†’ ((π‘β€˜π‘¦)↑2) = ((π‘β€˜π΅)↑2))
2726oveq2d 7425 . . . . . 6 (𝑦 = 𝐡 β†’ (((π‘β€˜π΄)↑2) + ((π‘β€˜π‘¦)↑2)) = (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2)))
2827oveq2d 7425 . . . . 5 (𝑦 = 𝐡 β†’ (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π‘¦)↑2))) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2))))
2924, 28eqeq12d 2749 . . . 4 (𝑦 = 𝐡 β†’ ((((π‘β€˜(𝐴𝐺𝑦))↑2) + ((π‘β€˜(𝐴𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π‘¦)↑2))) ↔ (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝑀𝐡))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2)))))
3017, 29rspc2v 3623 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2))) β†’ (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝑀𝐡))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2)))))
31303adant1 1131 . 2 ((π‘ˆ ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘β€˜(π‘₯𝐺𝑦))↑2) + ((π‘β€˜(π‘₯𝑀𝑦))↑2)) = (2 Β· (((π‘β€˜π‘₯)↑2) + ((π‘β€˜π‘¦)↑2))) β†’ (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝑀𝐡))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2)))))
327, 31mpd 15 1 ((π‘ˆ ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜(𝐴𝐺𝐡))↑2) + ((π‘β€˜(𝐴𝑀𝐡))↑2)) = (2 Β· (((π‘β€˜π΄)↑2) + ((π‘β€˜π΅)↑2))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  β€˜cfv 6544  (class class class)co 7409   + caddc 11113   Β· cmul 11115  2c2 12267  β†‘cexp 14027  NrmCVeccnv 29837   +𝑣 cpv 29838  BaseSetcba 29839   βˆ’π‘£ cnsb 29842  normCVcnmcv 29843  CPreHilOLDccphlo 30065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-neg 11447  df-grpo 29746  df-gid 29747  df-ginv 29748  df-gdiv 29749  df-ablo 29798  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-vs 29852  df-nmcv 29853  df-ph 30066
This theorem is referenced by:  minvecolem2  30128  hlpar2  30149
  Copyright terms: Public domain W3C validator