MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpar2 Structured version   Visualization version   GIF version

Theorem phpar2 30852
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1 𝑋 = (BaseSet‘𝑈)
isph.2 𝐺 = ( +𝑣𝑈)
isph.3 𝑀 = ( −𝑣𝑈)
isph.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phpar2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem phpar2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isph.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 isph.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 isph.3 . . . . 5 𝑀 = ( −𝑣𝑈)
4 isph.6 . . . . 5 𝑁 = (normCV𝑈)
51, 2, 3, 4isph 30851 . . . 4 (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
65simprbi 496 . . 3 (𝑈 ∈ CPreHilOLD → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
763ad2ant1 1132 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
8 fvoveq1 7454 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
98oveq1d 7446 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝑦))↑2))
10 fvoveq1 7454 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝑀𝑦)) = (𝑁‘(𝐴𝑀𝑦)))
1110oveq1d 7446 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝑀𝑦))↑2) = ((𝑁‘(𝐴𝑀𝑦))↑2))
129, 11oveq12d 7449 . . . . 5 (𝑥 = 𝐴 → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝑀𝑦))↑2)))
13 fveq2 6907 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1413oveq1d 7446 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁𝑥)↑2) = ((𝑁𝐴)↑2))
1514oveq1d 7446 . . . . . 6 (𝑥 = 𝐴 → (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))
1615oveq2d 7447 . . . . 5 (𝑥 = 𝐴 → (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))))
1712, 16eqeq12d 2751 . . . 4 (𝑥 = 𝐴 → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝑀𝑦))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))))
18 oveq2 7439 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1918fveq2d 6911 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
2019oveq1d 7446 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
21 oveq2 7439 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝑀𝑦) = (𝐴𝑀𝐵))
2221fveq2d 6911 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝑀𝑦)) = (𝑁‘(𝐴𝑀𝐵)))
2322oveq1d 7446 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝑀𝑦))↑2) = ((𝑁‘(𝐴𝑀𝐵))↑2))
2420, 23oveq12d 7449 . . . . 5 (𝑦 = 𝐵 → (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝑀𝑦))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)))
25 fveq2 6907 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
2625oveq1d 7446 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁𝑦)↑2) = ((𝑁𝐵)↑2))
2726oveq2d 7447 . . . . . 6 (𝑦 = 𝐵 → (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
2827oveq2d 7447 . . . . 5 (𝑦 = 𝐵 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
2924, 28eqeq12d 2751 . . . 4 (𝑦 = 𝐵 → ((((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝑀𝑦))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
3017, 29rspc2v 3633 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
31303adant1 1129 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
327, 31mpd 15 1 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cfv 6563  (class class class)co 7431   + caddc 11156   · cmul 11158  2c2 12319  cexp 14099  NrmCVeccnv 30613   +𝑣 cpv 30614  BaseSetcba 30615  𝑣 cnsb 30618  normCVcnmcv 30619  CPreHilOLDccphlo 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ph 30842
This theorem is referenced by:  minvecolem2  30904  hlpar2  30925
  Copyright terms: Public domain W3C validator