Step | Hyp | Ref
| Expression |
1 | | isph.1 |
. . . . 5
β’ π = (BaseSetβπ) |
2 | | isph.2 |
. . . . 5
β’ πΊ = ( +π£
βπ) |
3 | | isph.3 |
. . . . 5
β’ π = ( βπ£
βπ) |
4 | | isph.6 |
. . . . 5
β’ π =
(normCVβπ) |
5 | 1, 2, 3, 4 | isph 30075 |
. . . 4
β’ (π β CPreHilOLD
β (π β NrmCVec
β§ βπ₯ β
π βπ¦ β π (((πβ(π₯πΊπ¦))β2) + ((πβ(π₯ππ¦))β2)) = (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2))))) |
6 | 5 | simprbi 498 |
. . 3
β’ (π β CPreHilOLD
β βπ₯ β
π βπ¦ β π (((πβ(π₯πΊπ¦))β2) + ((πβ(π₯ππ¦))β2)) = (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2)))) |
7 | 6 | 3ad2ant1 1134 |
. 2
β’ ((π β CPreHilOLD
β§ π΄ β π β§ π΅ β π) β βπ₯ β π βπ¦ β π (((πβ(π₯πΊπ¦))β2) + ((πβ(π₯ππ¦))β2)) = (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2)))) |
8 | | fvoveq1 7432 |
. . . . . . 7
β’ (π₯ = π΄ β (πβ(π₯πΊπ¦)) = (πβ(π΄πΊπ¦))) |
9 | 8 | oveq1d 7424 |
. . . . . 6
β’ (π₯ = π΄ β ((πβ(π₯πΊπ¦))β2) = ((πβ(π΄πΊπ¦))β2)) |
10 | | fvoveq1 7432 |
. . . . . . 7
β’ (π₯ = π΄ β (πβ(π₯ππ¦)) = (πβ(π΄ππ¦))) |
11 | 10 | oveq1d 7424 |
. . . . . 6
β’ (π₯ = π΄ β ((πβ(π₯ππ¦))β2) = ((πβ(π΄ππ¦))β2)) |
12 | 9, 11 | oveq12d 7427 |
. . . . 5
β’ (π₯ = π΄ β (((πβ(π₯πΊπ¦))β2) + ((πβ(π₯ππ¦))β2)) = (((πβ(π΄πΊπ¦))β2) + ((πβ(π΄ππ¦))β2))) |
13 | | fveq2 6892 |
. . . . . . . 8
β’ (π₯ = π΄ β (πβπ₯) = (πβπ΄)) |
14 | 13 | oveq1d 7424 |
. . . . . . 7
β’ (π₯ = π΄ β ((πβπ₯)β2) = ((πβπ΄)β2)) |
15 | 14 | oveq1d 7424 |
. . . . . 6
β’ (π₯ = π΄ β (((πβπ₯)β2) + ((πβπ¦)β2)) = (((πβπ΄)β2) + ((πβπ¦)β2))) |
16 | 15 | oveq2d 7425 |
. . . . 5
β’ (π₯ = π΄ β (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2))) = (2 Β· (((πβπ΄)β2) + ((πβπ¦)β2)))) |
17 | 12, 16 | eqeq12d 2749 |
. . . 4
β’ (π₯ = π΄ β ((((πβ(π₯πΊπ¦))β2) + ((πβ(π₯ππ¦))β2)) = (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2))) β (((πβ(π΄πΊπ¦))β2) + ((πβ(π΄ππ¦))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ¦)β2))))) |
18 | | oveq2 7417 |
. . . . . . . 8
β’ (π¦ = π΅ β (π΄πΊπ¦) = (π΄πΊπ΅)) |
19 | 18 | fveq2d 6896 |
. . . . . . 7
β’ (π¦ = π΅ β (πβ(π΄πΊπ¦)) = (πβ(π΄πΊπ΅))) |
20 | 19 | oveq1d 7424 |
. . . . . 6
β’ (π¦ = π΅ β ((πβ(π΄πΊπ¦))β2) = ((πβ(π΄πΊπ΅))β2)) |
21 | | oveq2 7417 |
. . . . . . . 8
β’ (π¦ = π΅ β (π΄ππ¦) = (π΄ππ΅)) |
22 | 21 | fveq2d 6896 |
. . . . . . 7
β’ (π¦ = π΅ β (πβ(π΄ππ¦)) = (πβ(π΄ππ΅))) |
23 | 22 | oveq1d 7424 |
. . . . . 6
β’ (π¦ = π΅ β ((πβ(π΄ππ¦))β2) = ((πβ(π΄ππ΅))β2)) |
24 | 20, 23 | oveq12d 7427 |
. . . . 5
β’ (π¦ = π΅ β (((πβ(π΄πΊπ¦))β2) + ((πβ(π΄ππ¦))β2)) = (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄ππ΅))β2))) |
25 | | fveq2 6892 |
. . . . . . . 8
β’ (π¦ = π΅ β (πβπ¦) = (πβπ΅)) |
26 | 25 | oveq1d 7424 |
. . . . . . 7
β’ (π¦ = π΅ β ((πβπ¦)β2) = ((πβπ΅)β2)) |
27 | 26 | oveq2d 7425 |
. . . . . 6
β’ (π¦ = π΅ β (((πβπ΄)β2) + ((πβπ¦)β2)) = (((πβπ΄)β2) + ((πβπ΅)β2))) |
28 | 27 | oveq2d 7425 |
. . . . 5
β’ (π¦ = π΅ β (2 Β· (((πβπ΄)β2) + ((πβπ¦)β2))) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2)))) |
29 | 24, 28 | eqeq12d 2749 |
. . . 4
β’ (π¦ = π΅ β ((((πβ(π΄πΊπ¦))β2) + ((πβ(π΄ππ¦))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ¦)β2))) β (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄ππ΅))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2))))) |
30 | 17, 29 | rspc2v 3623 |
. . 3
β’ ((π΄ β π β§ π΅ β π) β (βπ₯ β π βπ¦ β π (((πβ(π₯πΊπ¦))β2) + ((πβ(π₯ππ¦))β2)) = (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2))) β (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄ππ΅))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2))))) |
31 | 30 | 3adant1 1131 |
. 2
β’ ((π β CPreHilOLD
β§ π΄ β π β§ π΅ β π) β (βπ₯ β π βπ¦ β π (((πβ(π₯πΊπ¦))β2) + ((πβ(π₯ππ¦))β2)) = (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2))) β (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄ππ΅))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2))))) |
32 | 7, 31 | mpd 15 |
1
β’ ((π β CPreHilOLD
β§ π΄ β π β§ π΅ β π) β (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄ππ΅))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2)))) |