Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat2 Structured version   Visualization version   GIF version

Theorem pmapjat2 39856
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = ((𝑀𝑄) + (𝑀𝑋)))

Proof of Theorem pmapjat2
StepHypRef Expression
1 pmapjat.b . . 3 𝐵 = (Base‘𝐾)
2 pmapjat.j . . 3 = (join‘𝐾)
3 pmapjat.a . . 3 𝐴 = (Atoms‘𝐾)
4 pmapjat.m . . 3 𝑀 = (pmap‘𝐾)
5 pmapjat.p . . 3 + = (+𝑃𝐾)
61, 2, 3, 4, 5pmapjat1 39855 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
7 hllat 39364 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
873ad2ant1 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
91, 3atbase 39290 . . . . 5 (𝑄𝐴𝑄𝐵)
1093ad2ant3 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
11 simp2 1138 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
121, 2latjcom 18492 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) = (𝑋 𝑄))
138, 10, 11, 12syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑄 𝑋) = (𝑋 𝑄))
1413fveq2d 6910 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = (𝑀‘(𝑋 𝑄)))
15 simp1 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
161, 3, 4pmapssat 39761 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
1715, 10, 16syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
181, 3, 4pmapssat 39761 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
19183adant3 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
203, 5paddcom 39815 . . 3 ((𝐾 ∈ Lat ∧ (𝑀𝑄) ⊆ 𝐴 ∧ (𝑀𝑋) ⊆ 𝐴) → ((𝑀𝑄) + (𝑀𝑋)) = ((𝑀𝑋) + (𝑀𝑄)))
218, 17, 19, 20syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) + (𝑀𝑋)) = ((𝑀𝑋) + (𝑀𝑄)))
226, 14, 213eqtr4d 2787 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = ((𝑀𝑄) + (𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  wss 3951  cfv 6561  (class class class)co 7431  Basecbs 17247  joincjn 18357  Latclat 18476  Atomscatm 39264  HLchlt 39351  pmapcpmap 39499  +𝑃cpadd 39797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-pmap 39506  df-padd 39798
This theorem is referenced by:  atmod1i1  39859
  Copyright terms: Public domain W3C validator