![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapjat2 | Structured version Visualization version GIF version |
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
Ref | Expression |
---|---|
pmapjat.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapjat.j | ⊢ ∨ = (join‘𝐾) |
pmapjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapjat.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapjat.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
pmapjat2 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapjat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | pmapjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapjat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | pmapjat.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | pmapjat1 39810 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
7 | hllat 39319 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
8 | 7 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Lat) |
9 | 1, 3 | atbase 39245 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
10 | 9 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
11 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | latjcom 18517 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
13 | 8, 10, 11, 12 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
14 | 13 | fveq2d 6924 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = (𝑀‘(𝑋 ∨ 𝑄))) |
15 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
16 | 1, 3, 4 | pmapssat 39716 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → (𝑀‘𝑄) ⊆ 𝐴) |
17 | 15, 10, 16 | syl2anc 583 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑄) ⊆ 𝐴) |
18 | 1, 3, 4 | pmapssat 39716 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
19 | 18 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑋) ⊆ 𝐴) |
20 | 3, 5 | paddcom 39770 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑀‘𝑄) ⊆ 𝐴 ∧ (𝑀‘𝑋) ⊆ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
21 | 8, 17, 19, 20 | syl3anc 1371 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
22 | 6, 14, 21 | 3eqtr4d 2790 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 joincjn 18381 Latclat 18501 Atomscatm 39219 HLchlt 39306 pmapcpmap 39454 +𝑃cpadd 39752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-pmap 39461 df-padd 39753 |
This theorem is referenced by: atmod1i1 39814 |
Copyright terms: Public domain | W3C validator |