![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapjat2 | Structured version Visualization version GIF version |
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
Ref | Expression |
---|---|
pmapjat.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapjat.j | ⊢ ∨ = (join‘𝐾) |
pmapjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapjat.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapjat.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
pmapjat2 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapjat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | pmapjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapjat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | pmapjat.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | pmapjat1 39835 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
7 | hllat 39344 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
8 | 7 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Lat) |
9 | 1, 3 | atbase 39270 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
10 | 9 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
11 | simp2 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | latjcom 18504 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
13 | 8, 10, 11, 12 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
14 | 13 | fveq2d 6910 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = (𝑀‘(𝑋 ∨ 𝑄))) |
15 | simp1 1135 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
16 | 1, 3, 4 | pmapssat 39741 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → (𝑀‘𝑄) ⊆ 𝐴) |
17 | 15, 10, 16 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑄) ⊆ 𝐴) |
18 | 1, 3, 4 | pmapssat 39741 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
19 | 18 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑋) ⊆ 𝐴) |
20 | 3, 5 | paddcom 39795 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑀‘𝑄) ⊆ 𝐴 ∧ (𝑀‘𝑋) ⊆ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
21 | 8, 17, 19, 20 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
22 | 6, 14, 21 | 3eqtr4d 2784 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 joincjn 18368 Latclat 18488 Atomscatm 39244 HLchlt 39331 pmapcpmap 39479 +𝑃cpadd 39777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-proset 18351 df-poset 18370 df-plt 18387 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-p0 18482 df-lat 18489 df-clat 18556 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-pmap 39486 df-padd 39778 |
This theorem is referenced by: atmod1i1 39839 |
Copyright terms: Public domain | W3C validator |