Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapjat2 | Structured version Visualization version GIF version |
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
Ref | Expression |
---|---|
pmapjat.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapjat.j | ⊢ ∨ = (join‘𝐾) |
pmapjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapjat.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapjat.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
pmapjat2 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapjat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | pmapjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapjat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | pmapjat.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | pmapjat1 37794 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
7 | hllat 37304 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
8 | 7 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Lat) |
9 | 1, 3 | atbase 37230 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
10 | 9 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
11 | simp2 1135 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | latjcom 18080 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
13 | 8, 10, 11, 12 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
14 | 13 | fveq2d 6760 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = (𝑀‘(𝑋 ∨ 𝑄))) |
15 | simp1 1134 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
16 | 1, 3, 4 | pmapssat 37700 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → (𝑀‘𝑄) ⊆ 𝐴) |
17 | 15, 10, 16 | syl2anc 583 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑄) ⊆ 𝐴) |
18 | 1, 3, 4 | pmapssat 37700 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
19 | 18 | 3adant3 1130 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑋) ⊆ 𝐴) |
20 | 3, 5 | paddcom 37754 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑀‘𝑄) ⊆ 𝐴 ∧ (𝑀‘𝑋) ⊆ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
21 | 8, 17, 19, 20 | syl3anc 1369 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
22 | 6, 14, 21 | 3eqtr4d 2788 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 joincjn 17944 Latclat 18064 Atomscatm 37204 HLchlt 37291 pmapcpmap 37438 +𝑃cpadd 37736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-pmap 37445 df-padd 37737 |
This theorem is referenced by: atmod1i1 37798 |
Copyright terms: Public domain | W3C validator |