Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat2 Structured version   Visualization version   GIF version

Theorem pmapjat2 38720
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐡 = (Baseβ€˜πΎ)
pmapjat.j ∨ = (joinβ€˜πΎ)
pmapjat.a 𝐴 = (Atomsβ€˜πΎ)
pmapjat.m 𝑀 = (pmapβ€˜πΎ)
pmapjat.p + = (+π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pmapjat2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜(𝑄 ∨ 𝑋)) = ((π‘€β€˜π‘„) + (π‘€β€˜π‘‹)))

Proof of Theorem pmapjat2
StepHypRef Expression
1 pmapjat.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 pmapjat.j . . 3 ∨ = (joinβ€˜πΎ)
3 pmapjat.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 pmapjat.m . . 3 𝑀 = (pmapβ€˜πΎ)
5 pmapjat.p . . 3 + = (+π‘ƒβ€˜πΎ)
61, 2, 3, 4, 5pmapjat1 38719 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜(𝑋 ∨ 𝑄)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)))
7 hllat 38228 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
873ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ 𝐾 ∈ Lat)
91, 3atbase 38154 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
1093ad2ant3 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄 ∈ 𝐡)
11 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ 𝑋 ∈ 𝐡)
121, 2latjcom 18399 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄))
138, 10, 11, 12syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄))
1413fveq2d 6895 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜(𝑄 ∨ 𝑋)) = (π‘€β€˜(𝑋 ∨ 𝑄)))
15 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ 𝐾 ∈ HL)
161, 3, 4pmapssat 38625 . . . 4 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐡) β†’ (π‘€β€˜π‘„) βŠ† 𝐴)
1715, 10, 16syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜π‘„) βŠ† 𝐴)
181, 3, 4pmapssat 38625 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) βŠ† 𝐴)
19183adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜π‘‹) βŠ† 𝐴)
203, 5paddcom 38679 . . 3 ((𝐾 ∈ Lat ∧ (π‘€β€˜π‘„) βŠ† 𝐴 ∧ (π‘€β€˜π‘‹) βŠ† 𝐴) β†’ ((π‘€β€˜π‘„) + (π‘€β€˜π‘‹)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)))
218, 17, 19, 20syl3anc 1371 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ ((π‘€β€˜π‘„) + (π‘€β€˜π‘‹)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)))
226, 14, 213eqtr4d 2782 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜(𝑄 ∨ 𝑋)) = ((π‘€β€˜π‘„) + (π‘€β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  joincjn 18263  Latclat 18383  Atomscatm 38128  HLchlt 38215  pmapcpmap 38363  +𝑃cpadd 38661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-pmap 38370  df-padd 38662
This theorem is referenced by:  atmod1i1  38723
  Copyright terms: Public domain W3C validator