![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resopunitintvd | Structured version Visualization version GIF version |
Description: Restrict continuous function on open unit interval. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
resopunitintvd.1 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) |
Ref | Expression |
---|---|
resopunitintvd | ⊢ (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioosscn 13418 | . . 3 ⊢ (0(,)1) ⊆ ℂ | |
2 | resmpt 6041 | . . 3 ⊢ ((0(,)1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) = (𝑥 ∈ (0(,)1) ↦ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) = (𝑥 ∈ (0(,)1) ↦ 𝐴) |
4 | resopunitintvd.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) | |
5 | rescncf 24847 | . . . 4 ⊢ ((0(,)1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ))) | |
6 | 1, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ)) |
8 | 3, 7 | eqeltrrid 2830 | 1 ⊢ (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3945 ↦ cmpt 5231 ↾ cres 5679 (class class class)co 7417 ℂcc 11136 0cc0 11138 1c1 11139 (,)cioo 13356 –cn→ccncf 24826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ioo 13360 df-cncf 24828 |
This theorem is referenced by: lcmineqlem10 41578 lcmineqlem12 41580 |
Copyright terms: Public domain | W3C validator |