![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resopunitintvd | Structured version Visualization version GIF version |
Description: Restrict continuous function on open unit interval. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
resopunitintvd.1 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) |
Ref | Expression |
---|---|
resopunitintvd | ⊢ (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioosscn 13393 | . . 3 ⊢ (0(,)1) ⊆ ℂ | |
2 | resmpt 6037 | . . 3 ⊢ ((0(,)1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) = (𝑥 ∈ (0(,)1) ↦ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) = (𝑥 ∈ (0(,)1) ↦ 𝐴) |
4 | resopunitintvd.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) | |
5 | rescncf 24650 | . . . 4 ⊢ ((0(,)1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ))) | |
6 | 1, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ)) |
8 | 3, 7 | eqeltrrid 2837 | 1 ⊢ (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ↦ cmpt 5231 ↾ cres 5678 (class class class)co 7412 ℂcc 11114 0cc0 11116 1c1 11117 (,)cioo 13331 –cn→ccncf 24629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-ioo 13335 df-cncf 24631 |
This theorem is referenced by: lcmineqlem10 41222 lcmineqlem12 41224 |
Copyright terms: Public domain | W3C validator |