![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resopunitintvd | Structured version Visualization version GIF version |
Description: Restrict continuous function on open unit interval. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
resopunitintvd.1 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) |
Ref | Expression |
---|---|
resopunitintvd | ⊢ (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioosscn 13382 | . . 3 ⊢ (0(,)1) ⊆ ℂ | |
2 | resmpt 6035 | . . 3 ⊢ ((0(,)1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) = (𝑥 ∈ (0(,)1) ↦ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) = (𝑥 ∈ (0(,)1) ↦ 𝐴) |
4 | resopunitintvd.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) | |
5 | rescncf 24404 | . . . 4 ⊢ ((0(,)1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ))) | |
6 | 1, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0(,)1)) ∈ ((0(,)1)–cn→ℂ)) |
8 | 3, 7 | eqeltrrid 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝐴) ∈ ((0(,)1)–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 ↦ cmpt 5230 ↾ cres 5677 (class class class)co 7405 ℂcc 11104 0cc0 11106 1c1 11107 (,)cioo 13320 –cn→ccncf 24383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ioo 13324 df-cncf 24385 |
This theorem is referenced by: lcmineqlem10 40891 lcmineqlem12 40893 |
Copyright terms: Public domain | W3C validator |