| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioosscn | Structured version Visualization version GIF version | ||
| Description: An open interval is a set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ioosscn | ⊢ (𝐴(,)𝐵) ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre 13448 | . 2 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 2 | ax-resscn 11212 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3993 | 1 ⊢ (𝐴(,)𝐵) ⊆ ℂ |
| Copyright terms: Public domain | W3C validator |