Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioosscn | Structured version Visualization version GIF version |
Description: An open interval is a set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ioosscn | ⊢ (𝐴(,)𝐵) ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioossre 13140 | . 2 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
2 | ax-resscn 10928 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3930 | 1 ⊢ (𝐴(,)𝐵) ⊆ ℂ |
Copyright terms: Public domain | W3C validator |