![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resclunitintvd | Structured version Visualization version GIF version |
Description: Restrict continuous function on closed unit interval. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
resclunitintvd.1 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) |
Ref | Expression |
---|---|
resclunitintvd | ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitsscn 13537 | . . 3 ⊢ (0[,]1) ⊆ ℂ | |
2 | resmpt 6057 | . . 3 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ 𝐴) |
4 | resclunitintvd.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) | |
5 | rescncf 24937 | . . . 4 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
6 | 1, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
8 | 3, 7 | eqeltrrid 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ↦ cmpt 5231 ↾ cres 5691 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 [,]cicc 13387 –cn→ccncf 24916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-icc 13391 df-cncf 24918 |
This theorem is referenced by: lcmineqlem10 42020 lcmineqlem12 42022 |
Copyright terms: Public domain | W3C validator |