| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resclunitintvd | Structured version Visualization version GIF version | ||
| Description: Restrict continuous function on closed unit interval. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| resclunitintvd.1 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) |
| Ref | Expression |
|---|---|
| resclunitintvd | ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitsscn 13523 | . . 3 ⊢ (0[,]1) ⊆ ℂ | |
| 2 | resmpt 6037 | . . 3 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ 𝐴) |
| 4 | resclunitintvd.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ)) | |
| 5 | rescncf 24874 | . . . 4 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
| 6 | 1, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 8 | 3, 7 | eqeltrrid 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ↦ cmpt 5207 ↾ cres 5669 (class class class)co 7414 ℂcc 11136 0cc0 11138 1c1 11139 [,]cicc 13373 –cn→ccncf 24853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-i2m1 11206 ax-1ne0 11207 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-icc 13377 df-cncf 24855 |
| This theorem is referenced by: lcmineqlem10 41976 lcmineqlem12 41978 |
| Copyright terms: Public domain | W3C validator |