Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resclunitintvd Structured version   Visualization version   GIF version

Theorem resclunitintvd 42140
Description: Restrict continuous function on closed unit interval. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
resclunitintvd.1 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ))
Assertion
Ref Expression
resclunitintvd (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ))

Proof of Theorem resclunitintvd
StepHypRef Expression
1 unitsscn 13402 . . 3 (0[,]1) ⊆ ℂ
2 resmpt 5990 . . 3 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ 𝐴))
31, 2ax-mp 5 . 2 ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ 𝐴)
4 resclunitintvd.1 . . 3 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ))
5 rescncf 24818 . . . 4 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)))
61, 5ax-mp 5 . . 3 ((𝑥 ∈ ℂ ↦ 𝐴) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
74, 6syl 17 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ 𝐴) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
83, 7eqeltrrid 2838 1 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ ((0[,]1)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  cmpt 5174  cres 5621  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014  [,]cicc 13250  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-i2m1 11081  ax-1ne0 11082  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-icc 13254  df-cncf 24799
This theorem is referenced by:  lcmineqlem10  42151  lcmineqlem12  42153
  Copyright terms: Public domain W3C validator