Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint Structured version   Visualization version   GIF version

Theorem 3factsumint 41551
Description: Helpful equation for lcm inequality proof. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint.1 𝐴 = (𝐿[,]π‘ˆ)
3factsumint.2 (πœ‘ β†’ 𝐡 ∈ Fin)
3factsumint.3 (πœ‘ β†’ 𝐿 ∈ ℝ)
3factsumint.4 (πœ‘ β†’ π‘ˆ ∈ ℝ)
3factsumint.5 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cnβ†’β„‚))
3factsumint.6 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ 𝐺 ∈ β„‚)
3factsumint.7 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cnβ†’β„‚))
Assertion
Ref Expression
3factsumint (πœ‘ β†’ ∫𝐴(𝐹 Β· Ξ£π‘˜ ∈ 𝐡 (𝐺 Β· 𝐻)) dπ‘₯ = Ξ£π‘˜ ∈ 𝐡 (𝐺 Β· ∫𝐴(𝐹 Β· 𝐻) dπ‘₯))
Distinct variable groups:   𝐴,π‘˜,π‘₯   𝐡,π‘˜,π‘₯   π‘˜,𝐹   π‘₯,𝐺   πœ‘,π‘˜,π‘₯
Allowed substitution hints:   π‘ˆ(π‘₯,π‘˜)   𝐹(π‘₯)   𝐺(π‘˜)   𝐻(π‘₯,π‘˜)   𝐿(π‘₯,π‘˜)

Proof of Theorem 3factsumint
StepHypRef Expression
1 3factsumint.2 . . . 4 (πœ‘ β†’ 𝐡 ∈ Fin)
2 3factsumint.5 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cnβ†’β„‚))
3 cncff 24829 . . . . . . 7 ((π‘₯ ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cnβ†’β„‚) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐹):π΄βŸΆβ„‚)
42, 3syl 17 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐹):π΄βŸΆβ„‚)
5 eqid 2725 . . . . . . 7 (π‘₯ ∈ 𝐴 ↦ 𝐹) = (π‘₯ ∈ 𝐴 ↦ 𝐹)
65fmpt 7114 . . . . . 6 (βˆ€π‘₯ ∈ 𝐴 𝐹 ∈ β„‚ ↔ (π‘₯ ∈ 𝐴 ↦ 𝐹):π΄βŸΆβ„‚)
74, 6sylibr 233 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 𝐹 ∈ β„‚)
87r19.21bi 3239 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐹 ∈ β„‚)
9 3factsumint.6 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ 𝐺 ∈ β„‚)
10 3factsumint.7 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cnβ†’β„‚))
11 cncff 24829 . . . . . . . 8 ((π‘₯ ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cnβ†’β„‚) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐻):π΄βŸΆβ„‚)
1210, 11syl 17 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐻):π΄βŸΆβ„‚)
13 eqid 2725 . . . . . . . 8 (π‘₯ ∈ 𝐴 ↦ 𝐻) = (π‘₯ ∈ 𝐴 ↦ 𝐻)
1413fmpt 7114 . . . . . . 7 (βˆ€π‘₯ ∈ 𝐴 𝐻 ∈ β„‚ ↔ (π‘₯ ∈ 𝐴 ↦ 𝐻):π΄βŸΆβ„‚)
1512, 14sylibr 233 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ 𝐡) β†’ βˆ€π‘₯ ∈ 𝐴 𝐻 ∈ β„‚)
1615r19.21bi 3239 . . . . 5 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ π‘₯ ∈ 𝐴) β†’ 𝐻 ∈ β„‚)
17 anass 467 . . . . . . 7 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ π‘₯ ∈ 𝐴) ↔ (πœ‘ ∧ (π‘˜ ∈ 𝐡 ∧ π‘₯ ∈ 𝐴)))
18 ancom 459 . . . . . . . 8 ((π‘˜ ∈ 𝐡 ∧ π‘₯ ∈ 𝐴) ↔ (π‘₯ ∈ 𝐴 ∧ π‘˜ ∈ 𝐡))
1918anbi2i 621 . . . . . . 7 ((πœ‘ ∧ (π‘˜ ∈ 𝐡 ∧ π‘₯ ∈ 𝐴)) ↔ (πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ π‘˜ ∈ 𝐡)))
2017, 19bitri 274 . . . . . 6 (((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ π‘₯ ∈ 𝐴) ↔ (πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ π‘˜ ∈ 𝐡)))
2120imbi1i 348 . . . . 5 ((((πœ‘ ∧ π‘˜ ∈ 𝐡) ∧ π‘₯ ∈ 𝐴) β†’ 𝐻 ∈ β„‚) ↔ ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ π‘˜ ∈ 𝐡)) β†’ 𝐻 ∈ β„‚))
2216, 21mpbi 229 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ π‘˜ ∈ 𝐡)) β†’ 𝐻 ∈ β„‚)
231, 8, 9, 223factsumint4 41550 . . 3 (πœ‘ β†’ βˆ«π΄Ξ£π‘˜ ∈ 𝐡 (𝐹 Β· (𝐺 Β· 𝐻)) dπ‘₯ = ∫𝐴(𝐹 Β· Ξ£π‘˜ ∈ 𝐡 (𝐺 Β· 𝐻)) dπ‘₯)
24 3factsumint.1 . . . 4 𝐴 = (𝐿[,]π‘ˆ)
25 3factsumint.3 . . . 4 (πœ‘ β†’ 𝐿 ∈ ℝ)
26 3factsumint.4 . . . 4 (πœ‘ β†’ π‘ˆ ∈ ℝ)
2724, 1, 25, 26, 8, 2, 9, 22, 103factsumint1 41547 . . 3 (πœ‘ β†’ βˆ«π΄Ξ£π‘˜ ∈ 𝐡 (𝐹 Β· (𝐺 Β· 𝐻)) dπ‘₯ = Ξ£π‘˜ ∈ 𝐡 ∫𝐴(𝐹 Β· (𝐺 Β· 𝐻)) dπ‘₯)
2823, 27eqtr3d 2767 . 2 (πœ‘ β†’ ∫𝐴(𝐹 Β· Ξ£π‘˜ ∈ 𝐡 (𝐺 Β· 𝐻)) dπ‘₯ = Ξ£π‘˜ ∈ 𝐡 ∫𝐴(𝐹 Β· (𝐺 Β· 𝐻)) dπ‘₯)
298, 9, 223factsumint2 41548 . 2 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐡 ∫𝐴(𝐹 Β· (𝐺 Β· 𝐻)) dπ‘₯ = Ξ£π‘˜ ∈ 𝐡 ∫𝐴(𝐺 Β· (𝐹 Β· 𝐻)) dπ‘₯)
3024, 25, 26, 8, 2, 9, 22, 103factsumint3 41549 . 2 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐡 ∫𝐴(𝐺 Β· (𝐹 Β· 𝐻)) dπ‘₯ = Ξ£π‘˜ ∈ 𝐡 (𝐺 Β· ∫𝐴(𝐹 Β· 𝐻) dπ‘₯))
3128, 29, 303eqtrd 2769 1 (πœ‘ β†’ ∫𝐴(𝐹 Β· Ξ£π‘˜ ∈ 𝐡 (𝐺 Β· 𝐻)) dπ‘₯ = Ξ£π‘˜ ∈ 𝐡 (𝐺 Β· ∫𝐴(𝐹 Β· 𝐻) dπ‘₯))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051   ↦ cmpt 5226  βŸΆwf 6538  (class class class)co 7415  Fincfn 8960  β„‚cc 11134  β„cr 11135   Β· cmul 11141  [,]cicc 13357  Ξ£csu 15662  β€“cnβ†’ccncf 24812  βˆ«citg 25563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-inf2 9662  ax-cc 10456  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5109  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-oadd 8487  df-omul 8488  df-er 8721  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-fi 9432  df-sup 9463  df-inf 9464  df-oi 9531  df-dju 9922  df-card 9960  df-acn 9963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-q 12961  df-rp 13005  df-xneg 13122  df-xadd 13123  df-xmul 13124  df-ioo 13358  df-ioc 13359  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13658  df-fl 13787  df-mod 13865  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-limsup 15445  df-clim 15462  df-rlim 15463  df-sum 15663  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-starv 17245  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-unif 17253  df-hom 17254  df-cco 17255  df-rest 17401  df-topn 17402  df-0g 17420  df-gsum 17421  df-topgen 17422  df-pt 17423  df-prds 17426  df-xrs 17481  df-qtop 17486  df-imas 17487  df-xps 17489  df-mre 17563  df-mrc 17564  df-acs 17566  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-submnd 18738  df-mulg 19026  df-cntz 19270  df-cmn 19739  df-psmet 21273  df-xmet 21274  df-met 21275  df-bl 21276  df-mopn 21277  df-cnfld 21282  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22865  df-cn 23147  df-cnp 23148  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24814  df-ovol 25409  df-vol 25410  df-mbf 25564  df-itg1 25565  df-itg2 25566  df-ibl 25567  df-itg 25568  df-0p 25615
This theorem is referenced by:  lcmineqlem2  41556
  Copyright terms: Public domain W3C validator