Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint Structured version   Visualization version   GIF version

Theorem 3factsumint 42005
Description: Helpful equation for lcm inequality proof. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint.1 𝐴 = (𝐿[,]𝑈)
3factsumint.2 (𝜑𝐵 ∈ Fin)
3factsumint.3 (𝜑𝐿 ∈ ℝ)
3factsumint.4 (𝜑𝑈 ∈ ℝ)
3factsumint.5 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint.6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint.7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑘,𝐹   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘)   𝐹(𝑥)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint
StepHypRef Expression
1 3factsumint.2 . . . 4 (𝜑𝐵 ∈ Fin)
2 3factsumint.5 . . . . . . 7 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3 cncff 24792 . . . . . . 7 ((𝑥𝐴𝐹) ∈ (𝐴cn→ℂ) → (𝑥𝐴𝐹):𝐴⟶ℂ)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑥𝐴𝐹):𝐴⟶ℂ)
5 eqid 2730 . . . . . . 7 (𝑥𝐴𝐹) = (𝑥𝐴𝐹)
65fmpt 7089 . . . . . 6 (∀𝑥𝐴 𝐹 ∈ ℂ ↔ (𝑥𝐴𝐹):𝐴⟶ℂ)
74, 6sylibr 234 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ℂ)
87r19.21bi 3231 . . . 4 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
9 3factsumint.6 . . . 4 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
10 3factsumint.7 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
11 cncff 24792 . . . . . . . 8 ((𝑥𝐴𝐻) ∈ (𝐴cn→ℂ) → (𝑥𝐴𝐻):𝐴⟶ℂ)
1210, 11syl 17 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻):𝐴⟶ℂ)
13 eqid 2730 . . . . . . . 8 (𝑥𝐴𝐻) = (𝑥𝐴𝐻)
1413fmpt 7089 . . . . . . 7 (∀𝑥𝐴 𝐻 ∈ ℂ ↔ (𝑥𝐴𝐻):𝐴⟶ℂ)
1512, 14sylibr 234 . . . . . 6 ((𝜑𝑘𝐵) → ∀𝑥𝐴 𝐻 ∈ ℂ)
1615r19.21bi 3231 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
17 anass 468 . . . . . . 7 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) ↔ (𝜑 ∧ (𝑘𝐵𝑥𝐴)))
18 ancom 460 . . . . . . . 8 ((𝑘𝐵𝑥𝐴) ↔ (𝑥𝐴𝑘𝐵))
1918anbi2i 623 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵𝑥𝐴)) ↔ (𝜑 ∧ (𝑥𝐴𝑘𝐵)))
2017, 19bitri 275 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) ↔ (𝜑 ∧ (𝑥𝐴𝑘𝐵)))
2120imbi1i 349 . . . . 5 ((((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ) ↔ ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ))
2216, 21mpbi 230 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
231, 8, 9, 223factsumint4 42004 . . 3 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥)
24 3factsumint.1 . . . 4 𝐴 = (𝐿[,]𝑈)
25 3factsumint.3 . . . 4 (𝜑𝐿 ∈ ℝ)
26 3factsumint.4 . . . 4 (𝜑𝑈 ∈ ℝ)
2724, 1, 25, 26, 8, 2, 9, 22, 103factsumint1 42001 . . 3 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
2823, 27eqtr3d 2767 . 2 (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
298, 9, 223factsumint2 42002 . 2 (𝜑 → Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
3024, 25, 26, 8, 2, 9, 22, 103factsumint3 42003 . 2 (𝜑 → Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
3128, 29, 303eqtrd 2769 1 (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  cmpt 5196  wf 6515  (class class class)co 7394  Fincfn 8922  cc 11084  cr 11085   · cmul 11091  [,]cicc 13322  Σcsu 15659  cnccncf 24775  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-cc 10406  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-disj 5083  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-ofr 7661  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-omul 8448  df-er 8682  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-fi 9380  df-sup 9411  df-inf 9412  df-oi 9481  df-dju 9872  df-card 9910  df-acn 9913  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xadd 13086  df-xmul 13087  df-ioo 13323  df-ioc 13324  df-ico 13325  df-icc 13326  df-fz 13482  df-fzo 13629  df-fl 13766  df-mod 13844  df-seq 13977  df-exp 14037  df-hash 14306  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cn 23120  df-cnp 23121  df-cmp 23280  df-tx 23455  df-hmeo 23648  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578
This theorem is referenced by:  lcmineqlem2  42010
  Copyright terms: Public domain W3C validator