Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint Structured version   Visualization version   GIF version

Theorem 3factsumint 39313
Description: Helpful equation for lcm inequality proof. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint.1 𝐴 = (𝐿[,]𝑈)
3factsumint.2 (𝜑𝐵 ∈ Fin)
3factsumint.3 (𝜑𝐿 ∈ ℝ)
3factsumint.4 (𝜑𝑈 ∈ ℝ)
3factsumint.5 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint.6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint.7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑘,𝐹   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘)   𝐹(𝑥)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint
StepHypRef Expression
1 3factsumint.2 . . . 4 (𝜑𝐵 ∈ Fin)
2 3factsumint.5 . . . . . . 7 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3 cncff 23498 . . . . . . 7 ((𝑥𝐴𝐹) ∈ (𝐴cn→ℂ) → (𝑥𝐴𝐹):𝐴⟶ℂ)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑥𝐴𝐹):𝐴⟶ℂ)
5 eqid 2798 . . . . . . 7 (𝑥𝐴𝐹) = (𝑥𝐴𝐹)
65fmpt 6851 . . . . . 6 (∀𝑥𝐴 𝐹 ∈ ℂ ↔ (𝑥𝐴𝐹):𝐴⟶ℂ)
74, 6sylibr 237 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ℂ)
87r19.21bi 3173 . . . 4 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
9 3factsumint.6 . . . 4 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
10 3factsumint.7 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
11 cncff 23498 . . . . . . . 8 ((𝑥𝐴𝐻) ∈ (𝐴cn→ℂ) → (𝑥𝐴𝐻):𝐴⟶ℂ)
1210, 11syl 17 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻):𝐴⟶ℂ)
13 eqid 2798 . . . . . . . 8 (𝑥𝐴𝐻) = (𝑥𝐴𝐻)
1413fmpt 6851 . . . . . . 7 (∀𝑥𝐴 𝐻 ∈ ℂ ↔ (𝑥𝐴𝐻):𝐴⟶ℂ)
1512, 14sylibr 237 . . . . . 6 ((𝜑𝑘𝐵) → ∀𝑥𝐴 𝐻 ∈ ℂ)
1615r19.21bi 3173 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
17 anass 472 . . . . . . 7 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) ↔ (𝜑 ∧ (𝑘𝐵𝑥𝐴)))
18 ancom 464 . . . . . . . 8 ((𝑘𝐵𝑥𝐴) ↔ (𝑥𝐴𝑘𝐵))
1918anbi2i 625 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵𝑥𝐴)) ↔ (𝜑 ∧ (𝑥𝐴𝑘𝐵)))
2017, 19bitri 278 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) ↔ (𝜑 ∧ (𝑥𝐴𝑘𝐵)))
2120imbi1i 353 . . . . 5 ((((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ) ↔ ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ))
2216, 21mpbi 233 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
231, 8, 9, 223factsumint4 39312 . . 3 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥)
24 3factsumint.1 . . . 4 𝐴 = (𝐿[,]𝑈)
25 3factsumint.3 . . . 4 (𝜑𝐿 ∈ ℝ)
26 3factsumint.4 . . . 4 (𝜑𝑈 ∈ ℝ)
2724, 1, 25, 26, 8, 2, 9, 22, 103factsumint1 39309 . . 3 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
2823, 27eqtr3d 2835 . 2 (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
298, 9, 223factsumint2 39310 . 2 (𝜑 → Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥)
3024, 25, 26, 8, 2, 9, 22, 103factsumint3 39311 . 2 (𝜑 → Σ𝑘𝐵𝐴(𝐺 · (𝐹 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
3128, 29, 303eqtrd 2837 1 (𝜑 → ∫𝐴(𝐹 · Σ𝑘𝐵 (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵 (𝐺 · ∫𝐴(𝐹 · 𝐻) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  cmpt 5110  wf 6320  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525   · cmul 10531  [,]cicc 12729  Σcsu 15034  cnccncf 23481  citg 24222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274
This theorem is referenced by:  lcmineqlem2  39318
  Copyright terms: Public domain W3C validator