Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem10 Structured version   Visualization version   GIF version

Theorem lcmineqlem10 40841
Description: Induction step of lcmineqlem13 40844 (deduction form). (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem10.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem10.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem10.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem10 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑁   𝑥,𝑀

Proof of Theorem lcmineqlem10
StepHypRef Expression
1 lcmineqlem10.2 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
21nncnd 12224 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
3 lcmineqlem10.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
43nncnd 12224 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
52, 4subcld 11567 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℂ)
6 elunitcn 13441 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
73nnnn0d 12528 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
8 expcl 14041 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑥𝑀) ∈ ℂ)
97, 8sylan2 594 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝜑) → (𝑥𝑀) ∈ ℂ)
109ancoms 460 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑥𝑀) ∈ ℂ)
116, 10sylan2 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]1)) → (𝑥𝑀) ∈ ℂ)
12 1cnd 11205 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
13 simpr 486 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1412, 13subcld 11567 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
15 lcmineqlem10.3 . . . . . . . . . . . . . . 15 (𝜑𝑀 < 𝑁)
163nnzd 12581 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
171nnzd 12581 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
18 znnsub 12604 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
1916, 17, 18syl2anc 585 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
2015, 19mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) ∈ ℕ)
21 nnm1nn0 12509 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ → ((𝑁𝑀) − 1) ∈ ℕ0)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) − 1) ∈ ℕ0)
2322adantr 482 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁𝑀) − 1) ∈ ℕ0)
2414, 23expcld 14107 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
256, 24sylan2 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
2611, 25mulcld 11230 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
27 0red 11213 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
28 1red 11211 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
29 expcncf 24424 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑀)) ∈ (ℂ–cn→ℂ))
307, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑀)) ∈ (ℂ–cn→ℂ))
31 1nn 12219 . . . . . . . . . . . . . 14 1 ∈ ℕ
3231a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
3320nnge1d 12256 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑁𝑀))
3432, 20, 33lcmineqlem9 40840 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ (ℂ–cn→ℂ))
3530, 34mulcncf 24945 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ (ℂ–cn→ℂ))
3635resclunitintvd 40830 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0[,]1)–cn→ℂ))
37 cnicciblnc 25342 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ 𝐿1)
3827, 28, 36, 37syl3anc 1372 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ 𝐿1)
3926, 38itgcl 25283 . . . . . . . 8 (𝜑 → ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 ∈ ℂ)
405, 39mulneg1d 11663 . . . . . . 7 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥))
415negcld 11554 . . . . . . . . . . . 12 (𝜑 → -(𝑁𝑀) ∈ ℂ)
4241, 26, 38itgmulc2 25333 . . . . . . . . . . 11 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
432adantr 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
444adantr 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℂ)
4543, 44subcld 11567 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
4645negcld 11554 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → -(𝑁𝑀) ∈ ℂ)
4710, 46, 24mul12d 11419 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) = (-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
486, 47sylan2 594 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) = (-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
4948itgeq2dv 25281 . . . . . . . . . . . 12 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
502adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (0[,]1)) → 𝑁 ∈ ℂ)
514adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (0[,]1)) → 𝑀 ∈ ℂ)
5250, 51subcld 11567 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (0[,]1)) → (𝑁𝑀) ∈ ℂ)
5352negcld 11554 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → -(𝑁𝑀) ∈ ℂ)
5453, 25mulcld 11230 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]1)) → (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
5511, 54mulcld 11230 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ℂ)
5627, 28, 55itgioo 25315 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
57 0le1 11733 . . . . . . . . . . . . . . . . 17 0 ≤ 1
5857a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 1)
5930resclunitintvd 40830 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥𝑀)) ∈ ((0[,]1)–cn→ℂ))
603nnred 12223 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
611nnred 12223 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℝ)
62 ltle 11298 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
6360, 61, 62syl2anc 585 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 < 𝑁𝑀𝑁))
6415, 63mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀𝑁)
653, 1, 64lcmineqlem9 40840 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ (ℂ–cn→ℂ))
6665resclunitintvd 40830 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ ((0[,]1)–cn→ℂ))
67 ssid 4003 . . . . . . . . . . . . . . . . . . . 20 ℂ ⊆ ℂ
68 cncfmptc 24410 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
6967, 67, 68mp3an23 1454 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
704, 69syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
7170resopunitintvd 40829 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝑀) ∈ ((0(,)1)–cn→ℂ))
72 nnm1nn0 12509 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
73 expcncf 24424 . . . . . . . . . . . . . . . . . . 19 ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
743, 72, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
7574resopunitintvd 40829 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0(,)1)–cn→ℂ))
7671, 75mulcncf 24945 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (𝑀 · (𝑥↑(𝑀 − 1)))) ∈ ((0(,)1)–cn→ℂ))
77 cncfmptc 24410 . . . . . . . . . . . . . . . . . . . 20 ((-(𝑁𝑀) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
7867, 67, 77mp3an23 1454 . . . . . . . . . . . . . . . . . . 19 (-(𝑁𝑀) ∈ ℂ → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
7941, 78syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
8079resopunitintvd 40829 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ -(𝑁𝑀)) ∈ ((0(,)1)–cn→ℂ))
8134resopunitintvd 40829 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ((0(,)1)–cn→ℂ))
8280, 81mulcncf 24945 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0(,)1)–cn→ℂ))
83 ioossicc 13406 . . . . . . . . . . . . . . . . . 18 (0(,)1) ⊆ (0[,]1)
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(,)1) ⊆ (0[,]1))
85 ioombl 25064 . . . . . . . . . . . . . . . . . 18 (0(,)1) ∈ dom vol
8685a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(,)1) ∈ dom vol)
8779, 34mulcncf 24945 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ (ℂ–cn→ℂ))
8830, 87mulcncf 24945 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ (ℂ–cn→ℂ))
8988resclunitintvd 40830 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ ((0[,]1)–cn→ℂ))
90 cnicciblnc 25342 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
9127, 28, 89, 90syl3anc 1372 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
9284, 86, 55, 91iblss 25304 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
933, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 − 1) ∈ ℕ0)
94 expcl 14041 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℂ ∧ (𝑀 − 1) ∈ ℕ0) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9593, 94sylan2 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝜑) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9695ancoms 460 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℂ) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
976, 96sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (0[,]1)) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9851, 97mulcld 11230 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → (𝑀 · (𝑥↑(𝑀 − 1))) ∈ ℂ)
9920nnnn0d 12528 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁𝑀) ∈ ℕ0)
10099adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℕ0)
10114, 100expcld 14107 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) ∈ ℂ)
1026, 101sylan2 594 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) ∈ ℂ)
10398, 102mulcld 11230 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) ∈ ℂ)
10470, 74mulcncf 24945 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))) ∈ (ℂ–cn→ℂ))
105104, 65mulcncf 24945 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ (ℂ–cn→ℂ))
106105resclunitintvd 40830 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ))
107 cnicciblnc 25342 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
10827, 28, 106, 107syl3anc 1372 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
10984, 86, 103, 108iblss 25304 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
110 dvexp 25452 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑀))) = (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
1113, 110syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑀))) = (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
11244, 96mulcld 11230 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (𝑀 · (𝑥↑(𝑀 − 1))) ∈ ℂ)
113111, 10, 112resdvopclptsd 40831 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ (𝑥𝑀))) = (𝑥 ∈ (0(,)1) ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
1143, 1, 15lcmineqlem8 40839 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
11546, 24mulcld 11230 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
116114, 101, 115resdvopclptsd 40831 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ (0(,)1) ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
117 oveq1 7411 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (𝑥𝑀) = (0↑𝑀))
118117adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 0) → (𝑥𝑀) = (0↑𝑀))
11930expd 14100 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0↑𝑀) = 0)
120119adantr 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 0) → (0↑𝑀) = 0)
121118, 120eqtrd 2773 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 = 0) → (𝑥𝑀) = 0)
122121oveq1d 7419 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 0) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = (0 · ((1 − 𝑥)↑(𝑁𝑀))))
123 0cn 11202 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
124 eleq1 2822 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑥 ∈ ℂ ↔ 0 ∈ ℂ))
125123, 124mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → 𝑥 ∈ ℂ)
126101mul02d 11408 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (0 · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
127125, 126sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 0) → (0 · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
128122, 127eqtrd 2773 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
129 oveq2 7412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
130 1m1e0 12280 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 1) = 0
131129, 130eqtrdi 2789 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 1 → (1 − 𝑥) = 0)
132131oveq1d 7419 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 1 → ((1 − 𝑥)↑(𝑁𝑀)) = (0↑(𝑁𝑀)))
133132adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑(𝑁𝑀)) = (0↑(𝑁𝑀)))
134200expd 14100 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0↑(𝑁𝑀)) = 0)
135134adantr 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 1) → (0↑(𝑁𝑀)) = 0)
136133, 135eqtrd 2773 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑(𝑁𝑀)) = 0)
137136oveq2d 7420 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 1) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥𝑀) · 0))
138 ax-1cn 11164 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
139 eleq1 2822 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥 ∈ ℂ ↔ 1 ∈ ℂ))
140138, 139mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝑥 = 1 → 𝑥 ∈ ℂ)
14110mul01d 11409 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → ((𝑥𝑀) · 0) = 0)
142140, 141sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 1) → ((𝑥𝑀) · 0) = 0)
143137, 142eqtrd 2773 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
14427, 28, 58, 59, 66, 76, 82, 92, 109, 113, 116, 128, 143itgparts 25546 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
14556, 144eqtr3d 2775 . . . . . . . . . . . . . 14 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
14627, 28, 103itgioo 25315 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
147146oveq2d 7420 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
148145, 147eqtrd 2773 . . . . . . . . . . . . 13 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
149 0m0e0 12328 . . . . . . . . . . . . . 14 (0 − 0) = 0
150149oveq1i 7414 . . . . . . . . . . . . 13 ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
151148, 150eqtrdi 2789 . . . . . . . . . . . 12 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15249, 151eqtr3d 2775 . . . . . . . . . . 11 (𝜑 → ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15342, 152eqtrd 2773 . . . . . . . . . 10 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15444, 96, 101mulassd 11233 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) = (𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))))
1556, 154sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) = (𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))))
156155itgeq2dv 25281 . . . . . . . . . . 11 (𝜑 → ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥)
157156oveq2d 7420 . . . . . . . . . 10 (𝜑 → (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
158153, 157eqtrd 2773 . . . . . . . . 9 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
15997, 102mulcld 11230 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) ∈ ℂ)
16074, 65mulcncf 24945 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ (ℂ–cn→ℂ))
161160resclunitintvd 40830 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ))
162 cnicciblnc 25342 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
16327, 28, 161, 162syl3anc 1372 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
1644, 159, 163itgmulc2 25333 . . . . . . . . . 10 (𝜑 → (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥)
165164oveq2d 7420 . . . . . . . . 9 (𝜑 → (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
166158, 165eqtr4d 2776 . . . . . . . 8 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
167 df-neg 11443 . . . . . . . 8 -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
168166, 167eqtr4di 2791 . . . . . . 7 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
16940, 168eqtr3d 2775 . . . . . 6 (𝜑 → -((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
1705, 39mulcld 11230 . . . . . . 7 (𝜑 → ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) ∈ ℂ)
171159, 163itgcl 25283 . . . . . . . 8 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 ∈ ℂ)
1724, 171mulcld 11230 . . . . . . 7 (𝜑 → (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) ∈ ℂ)
173170, 172neg11ad 11563 . . . . . 6 (𝜑 → (-((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) ↔ ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
174169, 173mpbid 231 . . . . 5 (𝜑 → ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
17520nnne0d 12258 . . . . . 6 (𝜑 → (𝑁𝑀) ≠ 0)
176172, 5, 39, 175divmuld 12008 . . . . 5 (𝜑 → (((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 ↔ ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
177174, 176mpbird 257 . . . 4 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥)
178138a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1794, 178pncand 11568 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
180179eqcomd 2739 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
181180oveq2d 7420 . . . . . . 7 (𝜑 → (𝑥𝑀) = (𝑥↑((𝑀 + 1) − 1)))
1822, 4, 178subsub4d 11598 . . . . . . . 8 (𝜑 → ((𝑁𝑀) − 1) = (𝑁 − (𝑀 + 1)))
183182oveq2d 7420 . . . . . . 7 (𝜑 → ((1 − 𝑥)↑((𝑁𝑀) − 1)) = ((1 − 𝑥)↑(𝑁 − (𝑀 + 1))))
184181, 183oveq12d 7422 . . . . . 6 (𝜑 → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))))
185184adantr 482 . . . . 5 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))))
186185itgeq2dv 25281 . . . 4 (𝜑 → ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥)
187177, 186eqtrd 2773 . . 3 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥)
188187eqcomd 2739 . 2 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)))
1894, 171, 5, 175div23d 12023 . 2 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
190188, 189eqtrd 2773 1 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wss 3947   class class class wbr 5147  cmpt 5230  dom cdm 5675  (class class class)co 7404  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   < clt 11244  cle 11245  cmin 11440  -cneg 11441   / cdiv 11867  cn 12208  0cn0 12468  cz 12554  (,)cioo 13320  [,]cicc 13323  cexp 14023  cnccncf 24374  volcvol 24962  𝐿1cibl 25116  citg 25117   D cdv 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-symdif 4241  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19643  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cn 22713  df-cnp 22714  df-haus 22801  df-cmp 22873  df-tx 23048  df-hmeo 23241  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-xms 23808  df-ms 23809  df-tms 23810  df-cncf 24376  df-ovol 24963  df-vol 24964  df-mbf 25118  df-itg1 25119  df-itg2 25120  df-ibl 25121  df-itg 25122  df-0p 25169  df-limc 25365  df-dv 25366
This theorem is referenced by:  lcmineqlem13  40844
  Copyright terms: Public domain W3C validator