Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem10 Structured version   Visualization version   GIF version

Theorem lcmineqlem10 42039
Description: Induction step of lcmineqlem13 42042 (deduction form). (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem10.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem10.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem10.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem10 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑁   𝑥,𝑀

Proof of Theorem lcmineqlem10
StepHypRef Expression
1 lcmineqlem10.2 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
21nncnd 12282 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
3 lcmineqlem10.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
43nncnd 12282 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
52, 4subcld 11620 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℂ)
6 elunitcn 13508 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
73nnnn0d 12587 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
8 expcl 14120 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑥𝑀) ∈ ℂ)
97, 8sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝜑) → (𝑥𝑀) ∈ ℂ)
109ancoms 458 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑥𝑀) ∈ ℂ)
116, 10sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]1)) → (𝑥𝑀) ∈ ℂ)
12 1cnd 11256 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
13 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1412, 13subcld 11620 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
15 lcmineqlem10.3 . . . . . . . . . . . . . . 15 (𝜑𝑀 < 𝑁)
163nnzd 12640 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
171nnzd 12640 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
18 znnsub 12663 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
1916, 17, 18syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
2015, 19mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) ∈ ℕ)
21 nnm1nn0 12567 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ → ((𝑁𝑀) − 1) ∈ ℕ0)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) − 1) ∈ ℕ0)
2322adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁𝑀) − 1) ∈ ℕ0)
2414, 23expcld 14186 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
256, 24sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
2611, 25mulcld 11281 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
27 0red 11264 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
28 1red 11262 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
29 expcncf 24953 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑀)) ∈ (ℂ–cn→ℂ))
307, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑀)) ∈ (ℂ–cn→ℂ))
31 1nn 12277 . . . . . . . . . . . . . 14 1 ∈ ℕ
3231a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
3320nnge1d 12314 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑁𝑀))
3432, 20, 33lcmineqlem9 42038 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ (ℂ–cn→ℂ))
3530, 34mulcncf 25480 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ (ℂ–cn→ℂ))
3635resclunitintvd 42028 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0[,]1)–cn→ℂ))
37 cnicciblnc 25878 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ 𝐿1)
3827, 28, 36, 37syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ 𝐿1)
3926, 38itgcl 25819 . . . . . . . 8 (𝜑 → ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 ∈ ℂ)
405, 39mulneg1d 11716 . . . . . . 7 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥))
415negcld 11607 . . . . . . . . . . . 12 (𝜑 → -(𝑁𝑀) ∈ ℂ)
4241, 26, 38itgmulc2 25869 . . . . . . . . . . 11 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
432adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
444adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℂ)
4543, 44subcld 11620 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
4645negcld 11607 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → -(𝑁𝑀) ∈ ℂ)
4710, 46, 24mul12d 11470 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) = (-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
486, 47sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) = (-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
4948itgeq2dv 25817 . . . . . . . . . . . 12 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
502adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (0[,]1)) → 𝑁 ∈ ℂ)
514adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (0[,]1)) → 𝑀 ∈ ℂ)
5250, 51subcld 11620 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (0[,]1)) → (𝑁𝑀) ∈ ℂ)
5352negcld 11607 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → -(𝑁𝑀) ∈ ℂ)
5453, 25mulcld 11281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]1)) → (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
5511, 54mulcld 11281 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ℂ)
5627, 28, 55itgioo 25851 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
57 0le1 11786 . . . . . . . . . . . . . . . . 17 0 ≤ 1
5857a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 1)
5930resclunitintvd 42028 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥𝑀)) ∈ ((0[,]1)–cn→ℂ))
603nnred 12281 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
611nnred 12281 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℝ)
62 ltle 11349 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
6360, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 < 𝑁𝑀𝑁))
6415, 63mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀𝑁)
653, 1, 64lcmineqlem9 42038 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ (ℂ–cn→ℂ))
6665resclunitintvd 42028 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ ((0[,]1)–cn→ℂ))
67 ssid 4006 . . . . . . . . . . . . . . . . . . . 20 ℂ ⊆ ℂ
68 cncfmptc 24938 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
6967, 67, 68mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
704, 69syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
7170resopunitintvd 42027 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝑀) ∈ ((0(,)1)–cn→ℂ))
72 nnm1nn0 12567 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
73 expcncf 24953 . . . . . . . . . . . . . . . . . . 19 ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
743, 72, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
7574resopunitintvd 42027 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0(,)1)–cn→ℂ))
7671, 75mulcncf 25480 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (𝑀 · (𝑥↑(𝑀 − 1)))) ∈ ((0(,)1)–cn→ℂ))
77 cncfmptc 24938 . . . . . . . . . . . . . . . . . . . 20 ((-(𝑁𝑀) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
7867, 67, 77mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 (-(𝑁𝑀) ∈ ℂ → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
7941, 78syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
8079resopunitintvd 42027 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ -(𝑁𝑀)) ∈ ((0(,)1)–cn→ℂ))
8134resopunitintvd 42027 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ((0(,)1)–cn→ℂ))
8280, 81mulcncf 25480 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0(,)1)–cn→ℂ))
83 ioossicc 13473 . . . . . . . . . . . . . . . . . 18 (0(,)1) ⊆ (0[,]1)
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(,)1) ⊆ (0[,]1))
85 ioombl 25600 . . . . . . . . . . . . . . . . . 18 (0(,)1) ∈ dom vol
8685a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(,)1) ∈ dom vol)
8779, 34mulcncf 25480 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ (ℂ–cn→ℂ))
8830, 87mulcncf 25480 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ (ℂ–cn→ℂ))
8988resclunitintvd 42028 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ ((0[,]1)–cn→ℂ))
90 cnicciblnc 25878 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
9127, 28, 89, 90syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
9284, 86, 55, 91iblss 25840 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
933, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 − 1) ∈ ℕ0)
94 expcl 14120 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℂ ∧ (𝑀 − 1) ∈ ℕ0) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9593, 94sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝜑) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9695ancoms 458 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℂ) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
976, 96sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (0[,]1)) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9851, 97mulcld 11281 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → (𝑀 · (𝑥↑(𝑀 − 1))) ∈ ℂ)
9920nnnn0d 12587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁𝑀) ∈ ℕ0)
10099adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℕ0)
10114, 100expcld 14186 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) ∈ ℂ)
1026, 101sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) ∈ ℂ)
10398, 102mulcld 11281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) ∈ ℂ)
10470, 74mulcncf 25480 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))) ∈ (ℂ–cn→ℂ))
105104, 65mulcncf 25480 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ (ℂ–cn→ℂ))
106105resclunitintvd 42028 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ))
107 cnicciblnc 25878 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
10827, 28, 106, 107syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
10984, 86, 103, 108iblss 25840 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
110 dvexp 25991 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑀))) = (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
1113, 110syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑀))) = (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
11244, 96mulcld 11281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (𝑀 · (𝑥↑(𝑀 − 1))) ∈ ℂ)
113111, 10, 112resdvopclptsd 42029 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ (𝑥𝑀))) = (𝑥 ∈ (0(,)1) ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
1143, 1, 15lcmineqlem8 42037 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
11546, 24mulcld 11281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
116114, 101, 115resdvopclptsd 42029 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ (0(,)1) ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
117 oveq1 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (𝑥𝑀) = (0↑𝑀))
118117adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 0) → (𝑥𝑀) = (0↑𝑀))
11930expd 14179 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0↑𝑀) = 0)
120119adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 0) → (0↑𝑀) = 0)
121118, 120eqtrd 2777 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 = 0) → (𝑥𝑀) = 0)
122121oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 0) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = (0 · ((1 − 𝑥)↑(𝑁𝑀))))
123 0cn 11253 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
124 eleq1 2829 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑥 ∈ ℂ ↔ 0 ∈ ℂ))
125123, 124mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → 𝑥 ∈ ℂ)
126101mul02d 11459 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (0 · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
127125, 126sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 0) → (0 · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
128122, 127eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
129 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
130 1m1e0 12338 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 1) = 0
131129, 130eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 1 → (1 − 𝑥) = 0)
132131oveq1d 7446 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 1 → ((1 − 𝑥)↑(𝑁𝑀)) = (0↑(𝑁𝑀)))
133132adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑(𝑁𝑀)) = (0↑(𝑁𝑀)))
134200expd 14179 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0↑(𝑁𝑀)) = 0)
135134adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 1) → (0↑(𝑁𝑀)) = 0)
136133, 135eqtrd 2777 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑(𝑁𝑀)) = 0)
137136oveq2d 7447 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 1) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥𝑀) · 0))
138 ax-1cn 11213 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
139 eleq1 2829 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥 ∈ ℂ ↔ 1 ∈ ℂ))
140138, 139mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝑥 = 1 → 𝑥 ∈ ℂ)
14110mul01d 11460 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → ((𝑥𝑀) · 0) = 0)
142140, 141sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 1) → ((𝑥𝑀) · 0) = 0)
143137, 142eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
14427, 28, 58, 59, 66, 76, 82, 92, 109, 113, 116, 128, 143itgparts 26088 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
14556, 144eqtr3d 2779 . . . . . . . . . . . . . 14 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
14627, 28, 103itgioo 25851 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
147146oveq2d 7447 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
148145, 147eqtrd 2777 . . . . . . . . . . . . 13 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
149 0m0e0 12386 . . . . . . . . . . . . . 14 (0 − 0) = 0
150149oveq1i 7441 . . . . . . . . . . . . 13 ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
151148, 150eqtrdi 2793 . . . . . . . . . . . 12 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15249, 151eqtr3d 2779 . . . . . . . . . . 11 (𝜑 → ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15342, 152eqtrd 2777 . . . . . . . . . 10 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15444, 96, 101mulassd 11284 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) = (𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))))
1556, 154sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) = (𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))))
156155itgeq2dv 25817 . . . . . . . . . . 11 (𝜑 → ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥)
157156oveq2d 7447 . . . . . . . . . 10 (𝜑 → (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
158153, 157eqtrd 2777 . . . . . . . . 9 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
15997, 102mulcld 11281 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) ∈ ℂ)
16074, 65mulcncf 25480 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ (ℂ–cn→ℂ))
161160resclunitintvd 42028 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ))
162 cnicciblnc 25878 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
16327, 28, 161, 162syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
1644, 159, 163itgmulc2 25869 . . . . . . . . . 10 (𝜑 → (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥)
165164oveq2d 7447 . . . . . . . . 9 (𝜑 → (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
166158, 165eqtr4d 2780 . . . . . . . 8 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
167 df-neg 11495 . . . . . . . 8 -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
168166, 167eqtr4di 2795 . . . . . . 7 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
16940, 168eqtr3d 2779 . . . . . 6 (𝜑 → -((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
1705, 39mulcld 11281 . . . . . . 7 (𝜑 → ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) ∈ ℂ)
171159, 163itgcl 25819 . . . . . . . 8 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 ∈ ℂ)
1724, 171mulcld 11281 . . . . . . 7 (𝜑 → (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) ∈ ℂ)
173170, 172neg11ad 11616 . . . . . 6 (𝜑 → (-((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) ↔ ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
174169, 173mpbid 232 . . . . 5 (𝜑 → ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
17520nnne0d 12316 . . . . . 6 (𝜑 → (𝑁𝑀) ≠ 0)
176172, 5, 39, 175divmuld 12065 . . . . 5 (𝜑 → (((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 ↔ ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
177174, 176mpbird 257 . . . 4 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥)
178138a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1794, 178pncand 11621 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
180179eqcomd 2743 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
181180oveq2d 7447 . . . . . . 7 (𝜑 → (𝑥𝑀) = (𝑥↑((𝑀 + 1) − 1)))
1822, 4, 178subsub4d 11651 . . . . . . . 8 (𝜑 → ((𝑁𝑀) − 1) = (𝑁 − (𝑀 + 1)))
183182oveq2d 7447 . . . . . . 7 (𝜑 → ((1 − 𝑥)↑((𝑁𝑀) − 1)) = ((1 − 𝑥)↑(𝑁 − (𝑀 + 1))))
184181, 183oveq12d 7449 . . . . . 6 (𝜑 → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))))
185184adantr 480 . . . . 5 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))))
186185itgeq2dv 25817 . . . 4 (𝜑 → ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥)
187177, 186eqtrd 2777 . . 3 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥)
188187eqcomd 2743 . 2 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)))
1894, 171, 5, 175div23d 12080 . 2 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
190188, 189eqtrd 2777 1 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  (,)cioo 13387  [,]cicc 13390  cexp 14102  cnccncf 24902  volcvol 25498  𝐿1cibl 25652  citg 25653   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  lcmineqlem13  42042
  Copyright terms: Public domain W3C validator