Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem10 Structured version   Visualization version   GIF version

Theorem lcmineqlem10 39326
Description: Induction step of lcmineqlem13 39329 (deduction form). (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem10.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem10.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem10.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem10 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑁   𝑥,𝑀

Proof of Theorem lcmineqlem10
StepHypRef Expression
1 lcmineqlem10.2 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
21nncnd 11641 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
3 lcmineqlem10.1 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
43nncnd 11641 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
52, 4subcld 10986 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℂ)
6 elunitcn 12846 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
73nnnn0d 11943 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
8 expcl 13443 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑥𝑀) ∈ ℂ)
97, 8sylan2 595 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝜑) → (𝑥𝑀) ∈ ℂ)
109ancoms 462 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑥𝑀) ∈ ℂ)
116, 10sylan2 595 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]1)) → (𝑥𝑀) ∈ ℂ)
12 1cnd 10625 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
13 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1412, 13subcld 10986 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
15 lcmineqlem10.3 . . . . . . . . . . . . . . 15 (𝜑𝑀 < 𝑁)
163nnzd 12074 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
171nnzd 12074 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
18 znnsub 12016 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
1916, 17, 18syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
2015, 19mpbid 235 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) ∈ ℕ)
21 nnm1nn0 11926 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ → ((𝑁𝑀) − 1) ∈ ℕ0)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) − 1) ∈ ℕ0)
2322adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁𝑀) − 1) ∈ ℕ0)
2414, 23expcld 13506 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
256, 24sylan2 595 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
2611, 25mulcld 10650 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
27 0red 10633 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
28 1red 10631 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
29 expcncf 23531 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑀)) ∈ (ℂ–cn→ℂ))
307, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑀)) ∈ (ℂ–cn→ℂ))
31 1nn 11636 . . . . . . . . . . . . . 14 1 ∈ ℕ
3231a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
3320nnge1d 11673 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑁𝑀))
3432, 20, 33lcmineqlem9 39325 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ (ℂ–cn→ℂ))
3530, 34mulcncf 24050 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ (ℂ–cn→ℂ))
3635resclunitintvd 39315 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0[,]1)–cn→ℂ))
37 cnicciblnc 24446 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ 𝐿1)
3827, 28, 36, 37syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ 𝐿1)
3926, 38itgcl 24387 . . . . . . . 8 (𝜑 → ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 ∈ ℂ)
405, 39mulneg1d 11082 . . . . . . 7 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥))
415negcld 10973 . . . . . . . . . . . 12 (𝜑 → -(𝑁𝑀) ∈ ℂ)
4241, 26, 38itgmulc2 24437 . . . . . . . . . . 11 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
432adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
444adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℂ)
4543, 44subcld 10986 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
4645negcld 10973 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → -(𝑁𝑀) ∈ ℂ)
4710, 46, 24mul12d 10838 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) = (-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
486, 47sylan2 595 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) = (-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
4948itgeq2dv 24385 . . . . . . . . . . . 12 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
502adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (0[,]1)) → 𝑁 ∈ ℂ)
514adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (0[,]1)) → 𝑀 ∈ ℂ)
5250, 51subcld 10986 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (0[,]1)) → (𝑁𝑀) ∈ ℂ)
5352negcld 10973 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → -(𝑁𝑀) ∈ ℂ)
5453, 25mulcld 10650 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]1)) → (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
5511, 54mulcld 10650 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ℂ)
5627, 28, 55itgioo 24419 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥)
57 0le1 11152 . . . . . . . . . . . . . . . . 17 0 ≤ 1
5857a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 1)
5930resclunitintvd 39315 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥𝑀)) ∈ ((0[,]1)–cn→ℂ))
603nnred 11640 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
611nnred 11640 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℝ)
62 ltle 10718 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
6360, 61, 62syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 < 𝑁𝑀𝑁))
6415, 63mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀𝑁)
653, 1, 64lcmineqlem9 39325 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ (ℂ–cn→ℂ))
6665resclunitintvd 39315 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁𝑀))) ∈ ((0[,]1)–cn→ℂ))
67 ssid 3937 . . . . . . . . . . . . . . . . . . . 20 ℂ ⊆ ℂ
68 cncfmptc 23517 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
6967, 67, 68mp3an23 1450 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
704, 69syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑀) ∈ (ℂ–cn→ℂ))
7170resopunitintvd 39314 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ 𝑀) ∈ ((0(,)1)–cn→ℂ))
72 nnm1nn0 11926 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
73 expcncf 23531 . . . . . . . . . . . . . . . . . . 19 ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
743, 72, 733syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
7574resopunitintvd 39314 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0(,)1)–cn→ℂ))
7671, 75mulcncf 24050 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (𝑀 · (𝑥↑(𝑀 − 1)))) ∈ ((0(,)1)–cn→ℂ))
77 cncfmptc 23517 . . . . . . . . . . . . . . . . . . . 20 ((-(𝑁𝑀) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
7867, 67, 77mp3an23 1450 . . . . . . . . . . . . . . . . . . 19 (-(𝑁𝑀) ∈ ℂ → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
7941, 78syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℂ ↦ -(𝑁𝑀)) ∈ (ℂ–cn→ℂ))
8079resopunitintvd 39314 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ -(𝑁𝑀)) ∈ ((0(,)1)–cn→ℂ))
8134resopunitintvd 39314 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ((0(,)1)–cn→ℂ))
8280, 81mulcncf 24050 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ ((0(,)1)–cn→ℂ))
83 ioossicc 12811 . . . . . . . . . . . . . . . . . 18 (0(,)1) ⊆ (0[,]1)
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(,)1) ⊆ (0[,]1))
85 ioombl 24169 . . . . . . . . . . . . . . . . . 18 (0(,)1) ∈ dom vol
8685a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(,)1) ∈ dom vol)
8779, 34mulcncf 24050 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) ∈ (ℂ–cn→ℂ))
8830, 87mulcncf 24050 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ (ℂ–cn→ℂ))
8988resclunitintvd 39315 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ ((0[,]1)–cn→ℂ))
90 cnicciblnc 24446 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
9127, 28, 89, 90syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
9284, 86, 55, 91iblss 24408 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))) ∈ 𝐿1)
933, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 − 1) ∈ ℕ0)
94 expcl 13443 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℂ ∧ (𝑀 − 1) ∈ ℕ0) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9593, 94sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝜑) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9695ancoms 462 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℂ) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
976, 96sylan2 595 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (0[,]1)) → (𝑥↑(𝑀 − 1)) ∈ ℂ)
9851, 97mulcld 10650 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → (𝑀 · (𝑥↑(𝑀 − 1))) ∈ ℂ)
9920nnnn0d 11943 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁𝑀) ∈ ℕ0)
10099adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℕ0)
10114, 100expcld 13506 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁𝑀)) ∈ ℂ)
1026, 101sylan2 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁𝑀)) ∈ ℂ)
10398, 102mulcld 10650 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) ∈ ℂ)
10470, 74mulcncf 24050 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))) ∈ (ℂ–cn→ℂ))
105104, 65mulcncf 24050 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ (ℂ–cn→ℂ))
106105resclunitintvd 39315 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ))
107 cnicciblnc 24446 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
10827, 28, 106, 107syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
10984, 86, 103, 108iblss 24408 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
110 dvexp 24556 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑀))) = (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
1113, 110syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑀))) = (𝑥 ∈ ℂ ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
11244, 96mulcld 10650 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (𝑀 · (𝑥↑(𝑀 − 1))) ∈ ℂ)
113111, 10, 112resdvopclptsd 39316 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ (𝑥𝑀))) = (𝑥 ∈ (0(,)1) ↦ (𝑀 · (𝑥↑(𝑀 − 1)))))
1143, 1, 15lcmineqlem8 39324 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
11546, 24mulcld 10650 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) ∈ ℂ)
116114, 101, 115resdvopclptsd 39316 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ (0(,)1) ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
117 oveq1 7142 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (𝑥𝑀) = (0↑𝑀))
118117adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 0) → (𝑥𝑀) = (0↑𝑀))
11930expd 13499 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0↑𝑀) = 0)
120119adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 0) → (0↑𝑀) = 0)
121118, 120eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 = 0) → (𝑥𝑀) = 0)
122121oveq1d 7150 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 0) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = (0 · ((1 − 𝑥)↑(𝑁𝑀))))
123 0cn 10622 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
124 eleq1 2877 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑥 ∈ ℂ ↔ 0 ∈ ℂ))
125123, 124mpbiri 261 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → 𝑥 ∈ ℂ)
126101mul02d 10827 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (0 · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
127125, 126sylan2 595 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 0) → (0 · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
128122, 127eqtrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
129 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
130 1m1e0 11697 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 1) = 0
131129, 130eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 1 → (1 − 𝑥) = 0)
132131oveq1d 7150 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 1 → ((1 − 𝑥)↑(𝑁𝑀)) = (0↑(𝑁𝑀)))
133132adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑(𝑁𝑀)) = (0↑(𝑁𝑀)))
134200expd 13499 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0↑(𝑁𝑀)) = 0)
135134adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 = 1) → (0↑(𝑁𝑀)) = 0)
136133, 135eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑(𝑁𝑀)) = 0)
137136oveq2d 7151 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 1) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = ((𝑥𝑀) · 0))
138 ax-1cn 10584 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
139 eleq1 2877 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥 ∈ ℂ ↔ 1 ∈ ℂ))
140138, 139mpbiri 261 . . . . . . . . . . . . . . . . . 18 (𝑥 = 1 → 𝑥 ∈ ℂ)
14110mul01d 10828 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → ((𝑥𝑀) · 0) = 0)
142140, 141sylan2 595 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 1) → ((𝑥𝑀) · 0) = 0)
143137, 142eqtrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → ((𝑥𝑀) · ((1 − 𝑥)↑(𝑁𝑀))) = 0)
14427, 28, 58, 59, 66, 76, 82, 92, 109, 113, 116, 128, 143itgparts 24650 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
14556, 144eqtr3d 2835 . . . . . . . . . . . . . 14 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
14627, 28, 103itgioo 24419 . . . . . . . . . . . . . . 15 (𝜑 → ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
147146oveq2d 7151 . . . . . . . . . . . . . 14 (𝜑 → ((0 − 0) − ∫(0(,)1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
148145, 147eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
149 0m0e0 11745 . . . . . . . . . . . . . 14 (0 − 0) = 0
150149oveq1i 7145 . . . . . . . . . . . . 13 ((0 − 0) − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)
151148, 150eqtrdi 2849 . . . . . . . . . . . 12 (𝜑 → ∫(0[,]1)((𝑥𝑀) · (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15249, 151eqtr3d 2835 . . . . . . . . . . 11 (𝜑 → ∫(0[,]1)(-(𝑁𝑀) · ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))) d𝑥 = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15342, 152eqtrd 2833 . . . . . . . . . 10 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
15444, 96, 101mulassd 10653 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) = (𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))))
1556, 154sylan2 595 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) = (𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))))
156155itgeq2dv 24385 . . . . . . . . . . 11 (𝜑 → ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 = ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥)
157156oveq2d 7151 . . . . . . . . . 10 (𝜑 → (0 − ∫(0[,]1)((𝑀 · (𝑥↑(𝑀 − 1))) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
158153, 157eqtrd 2833 . . . . . . . . 9 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
15997, 102mulcld 10650 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) ∈ ℂ)
16074, 65mulcncf 24050 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ (ℂ–cn→ℂ))
161160resclunitintvd 39315 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ))
162 cnicciblnc 24446 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
16327, 28, 161, 162syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) ∈ 𝐿1)
1644, 159, 163itgmulc2 24437 . . . . . . . . . 10 (𝜑 → (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥)
165164oveq2d 7151 . . . . . . . . 9 (𝜑 → (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)) = (0 − ∫(0[,]1)(𝑀 · ((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀)))) d𝑥))
166158, 165eqtr4d 2836 . . . . . . . 8 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
167 df-neg 10862 . . . . . . . 8 -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) = (0 − (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
168166, 167eqtr4di 2851 . . . . . . 7 (𝜑 → (-(𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
16940, 168eqtr3d 2835 . . . . . 6 (𝜑 → -((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
1705, 39mulcld 10650 . . . . . . 7 (𝜑 → ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) ∈ ℂ)
171159, 163itgcl 24387 . . . . . . . 8 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥 ∈ ℂ)
1724, 171mulcld 10650 . . . . . . 7 (𝜑 → (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) ∈ ℂ)
173170, 172neg11ad 10982 . . . . . 6 (𝜑 → (-((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = -(𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) ↔ ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
174169, 173mpbid 235 . . . . 5 (𝜑 → ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
17520nnne0d 11675 . . . . . 6 (𝜑 → (𝑁𝑀) ≠ 0)
176172, 5, 39, 175divmuld 11427 . . . . 5 (𝜑 → (((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 ↔ ((𝑁𝑀) · ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥) = (𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥)))
177174, 176mpbird 260 . . . 4 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥)
178138a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
1794, 178pncand 10987 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
180179eqcomd 2804 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
181180oveq2d 7151 . . . . . . 7 (𝜑 → (𝑥𝑀) = (𝑥↑((𝑀 + 1) − 1)))
1822, 4, 178subsub4d 11017 . . . . . . . 8 (𝜑 → ((𝑁𝑀) − 1) = (𝑁 − (𝑀 + 1)))
183182oveq2d 7151 . . . . . . 7 (𝜑 → ((1 − 𝑥)↑((𝑁𝑀) − 1)) = ((1 − 𝑥)↑(𝑁 − (𝑀 + 1))))
184181, 183oveq12d 7153 . . . . . 6 (𝜑 → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))))
185184adantr 484 . . . . 5 ((𝜑𝑥 ∈ (0[,]1)) → ((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))))
186185itgeq2dv 24385 . . . 4 (𝜑 → ∫(0[,]1)((𝑥𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) d𝑥 = ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥)
187177, 186eqtrd 2833 . . 3 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥)
188187eqcomd 2804 . 2 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)))
1894, 171, 5, 175div23d 11442 . 2 (𝜑 → ((𝑀 · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥) / (𝑁𝑀)) = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
190188, 189eqtrd 2833 1 (𝜑 → ∫(0[,]1)((𝑥↑((𝑀 + 1) − 1)) · ((1 − 𝑥)↑(𝑁 − (𝑀 + 1)))) d𝑥 = ((𝑀 / (𝑁𝑀)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881   class class class wbr 5030  cmpt 5110  dom cdm 5519  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  (,)cioo 12726  [,]cicc 12729  cexp 13425  cnccncf 23481  volcvol 24067  𝐿1cibl 24221  citg 24222   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-symdif 4169  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-limc 24469  df-dv 24470
This theorem is referenced by:  lcmineqlem13  39329
  Copyright terms: Public domain W3C validator