MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest2r Structured version   Visualization version   GIF version

Theorem cnrest2r 22438
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))

Proof of Theorem cnrest2r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)))
2 cntop2 22392 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐾t 𝐵) ∈ Top)
32adantl 482 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ Top)
4 restrcl 22308 . . . . . . 7 ((𝐾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V))
5 eqid 2738 . . . . . . . 8 𝐾 = 𝐾
65restin 22317 . . . . . . 7 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
73, 4, 63syl 18 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
87oveq2d 7291 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 Cn (𝐾t 𝐵)) = (𝐽 Cn (𝐾t (𝐵 𝐾))))
91, 8eleqtrd 2841 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾))))
10 simpl 483 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ Top)
11 toptopon2 22067 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1210, 11sylib 217 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ (TopOn‘ 𝐾))
13 cntop1 22391 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 482 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
15 toptopon2 22067 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1614, 15sylib 217 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
17 inss2 4163 . . . . . . . 8 (𝐵 𝐾) ⊆ 𝐾
18 resttopon 22312 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
1912, 17, 18sylancl 586 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
20 cnf2 22400 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2116, 19, 9, 20syl3anc 1370 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2221frnd 6608 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → ran 𝑓 ⊆ (𝐵 𝐾))
2317a1i 11 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐵 𝐾) ⊆ 𝐾)
24 cnrest2 22437 . . . . 5 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
2512, 22, 23, 24syl3anc 1370 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
269, 25mpbird 256 . . 3 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾))
2726ex 413 . 2 (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾)))
2827ssrdv 3927 1 (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887   cuni 4839  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378
This theorem is referenced by:  invrcn  23332  metdcn  24003  ngnmcncn  24008  metdscn2  24020  icchmeo  24104  cnrehmeo  24116  evth  24122  reparphti  24160  nmcnc  29058  connpconn  33197  cvxsconn  33205  cvmliftlem8  33254  cvmlift2lem9a  33265  cvmlift3lem6  33286  knoppcnlem10  34682  broucube  35811
  Copyright terms: Public domain W3C validator