| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnrest2r | Structured version Visualization version GIF version | ||
| Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnrest2r | ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) | |
| 2 | cntop2 23135 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → (𝐾 ↾t 𝐵) ∈ Top) | |
| 3 | 2 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) ∈ Top) |
| 4 | restrcl 23051 | . . . . . . 7 ⊢ ((𝐾 ↾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | eqid 2730 | . . . . . . . 8 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 5 | restin 23060 | . . . . . . 7 ⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
| 7 | 3, 4, 6 | 3syl 18 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
| 8 | 7 | oveq2d 7406 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐽 Cn (𝐾 ↾t 𝐵)) = (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
| 9 | 1, 8 | eleqtrd 2831 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
| 10 | simpl 482 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ Top) | |
| 11 | toptopon2 22812 | . . . . . 6 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 12 | 10, 11 | sylib 218 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 13 | cntop1 23134 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝐽 ∈ Top) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ Top) |
| 15 | toptopon2 22812 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 16 | 14, 15 | sylib 218 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 17 | inss2 4204 | . . . . . . . 8 ⊢ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾 | |
| 18 | resttopon 23055 | . . . . . . . 8 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) | |
| 19 | 12, 17, 18 | sylancl 586 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) |
| 20 | cnf2 23143 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) | |
| 21 | 16, 19, 9, 20 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) |
| 22 | 21 | frnd 6699 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾)) |
| 23 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) |
| 24 | cnrest2 23180 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾) ∧ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) | |
| 25 | 12, 22, 23, 24 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) |
| 26 | 9, 25 | mpbird 257 | . . 3 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
| 27 | 26 | ex 412 | . 2 ⊢ (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾))) |
| 28 | 27 | ssrdv 3955 | 1 ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∪ cuni 4874 ran crn 5642 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Topctop 22787 TopOnctopon 22804 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-map 8804 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cn 23121 |
| This theorem is referenced by: invrcn 24075 metdcn 24736 ngnmcncn 24741 metdscn2 24753 icchmeo 24845 icchmeoOLD 24846 cnrehmeo 24858 cnrehmeoOLD 24859 evth 24865 reparphti 24903 reparphtiOLD 24904 nmcnc 30632 connpconn 35229 cvxsconn 35237 cvmliftlem8 35286 cvmlift2lem9a 35297 cvmlift3lem6 35318 knoppcnlem10 36497 broucube 37655 |
| Copyright terms: Public domain | W3C validator |