| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnrest2r | Structured version Visualization version GIF version | ||
| Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnrest2r | ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) | |
| 2 | cntop2 23156 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → (𝐾 ↾t 𝐵) ∈ Top) | |
| 3 | 2 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) ∈ Top) |
| 4 | restrcl 23072 | . . . . . . 7 ⊢ ((𝐾 ↾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | eqid 2731 | . . . . . . . 8 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 5 | restin 23081 | . . . . . . 7 ⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
| 7 | 3, 4, 6 | 3syl 18 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
| 8 | 7 | oveq2d 7362 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐽 Cn (𝐾 ↾t 𝐵)) = (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
| 9 | 1, 8 | eleqtrd 2833 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
| 10 | simpl 482 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ Top) | |
| 11 | toptopon2 22833 | . . . . . 6 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 12 | 10, 11 | sylib 218 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 13 | cntop1 23155 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝐽 ∈ Top) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ Top) |
| 15 | toptopon2 22833 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 16 | 14, 15 | sylib 218 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 17 | inss2 4185 | . . . . . . . 8 ⊢ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾 | |
| 18 | resttopon 23076 | . . . . . . . 8 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) | |
| 19 | 12, 17, 18 | sylancl 586 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) |
| 20 | cnf2 23164 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) | |
| 21 | 16, 19, 9, 20 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) |
| 22 | 21 | frnd 6659 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾)) |
| 23 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) |
| 24 | cnrest2 23201 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾) ∧ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) | |
| 25 | 12, 22, 23, 24 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) |
| 26 | 9, 25 | mpbird 257 | . . 3 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
| 27 | 26 | ex 412 | . 2 ⊢ (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾))) |
| 28 | 27 | ssrdv 3935 | 1 ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4856 ran crn 5615 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↾t crest 17324 Topctop 22808 TopOnctopon 22825 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-map 8752 df-en 8870 df-fin 8873 df-fi 9295 df-rest 17326 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-cn 23142 |
| This theorem is referenced by: invrcn 24096 metdcn 24756 ngnmcncn 24761 metdscn2 24773 icchmeo 24865 icchmeoOLD 24866 cnrehmeo 24878 cnrehmeoOLD 24879 evth 24885 reparphti 24923 reparphtiOLD 24924 nmcnc 30676 connpconn 35279 cvxsconn 35287 cvmliftlem8 35336 cvmlift2lem9a 35347 cvmlift3lem6 35368 knoppcnlem10 36546 broucube 37704 |
| Copyright terms: Public domain | W3C validator |