Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnrest2r | Structured version Visualization version GIF version |
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
cnrest2r | ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) | |
2 | cntop2 22138 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → (𝐾 ↾t 𝐵) ∈ Top) | |
3 | 2 | adantl 485 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) ∈ Top) |
4 | restrcl 22054 | . . . . . . 7 ⊢ ((𝐾 ↾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V)) | |
5 | eqid 2737 | . . . . . . . 8 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
6 | 5 | restin 22063 | . . . . . . 7 ⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
7 | 3, 4, 6 | 3syl 18 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) = (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))) |
8 | 7 | oveq2d 7229 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐽 Cn (𝐾 ↾t 𝐵)) = (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
9 | 1, 8 | eleqtrd 2840 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) |
10 | simpl 486 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ Top) | |
11 | toptopon2 21815 | . . . . . 6 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
12 | 10, 11 | sylib 221 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
13 | cntop1 22137 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝐽 ∈ Top) | |
14 | 13 | adantl 485 | . . . . . . . 8 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ Top) |
15 | toptopon2 21815 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
16 | 14, 15 | sylib 221 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
17 | inss2 4144 | . . . . . . . 8 ⊢ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾 | |
18 | resttopon 22058 | . . . . . . . 8 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) | |
19 | 12, 17, 18 | sylancl 589 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾))) |
20 | cnf2 22146 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)) ∈ (TopOn‘(𝐵 ∩ ∪ 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾)))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) | |
21 | 16, 19, 9, 20 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓:∪ 𝐽⟶(𝐵 ∩ ∪ 𝐾)) |
22 | 21 | frnd 6553 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾)) |
23 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) |
24 | cnrest2 22183 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 ∩ ∪ 𝐾) ∧ (𝐵 ∩ ∪ 𝐾) ⊆ ∪ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) | |
25 | 12, 22, 23, 24 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t (𝐵 ∩ ∪ 𝐾))))) |
26 | 9, 25 | mpbird 260 | . . 3 ⊢ ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
27 | 26 | ex 416 | . 2 ⊢ (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾))) |
28 | 27 | ssrdv 3907 | 1 ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∩ cin 3865 ⊆ wss 3866 ∪ cuni 4819 ran crn 5552 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ↾t crest 16925 Topctop 21790 TopOnctopon 21807 Cn ccn 22121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-map 8510 df-en 8627 df-fin 8630 df-fi 9027 df-rest 16927 df-topgen 16948 df-top 21791 df-topon 21808 df-bases 21843 df-cn 22124 |
This theorem is referenced by: invrcn 23078 metdcn 23737 ngnmcncn 23742 metdscn2 23754 icchmeo 23838 cnrehmeo 23850 evth 23856 reparphti 23894 nmcnc 28777 connpconn 32910 cvxsconn 32918 cvmliftlem8 32967 cvmlift2lem9a 32978 cvmlift3lem6 32999 knoppcnlem10 34419 broucube 35548 |
Copyright terms: Public domain | W3C validator |