| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccat2s1p2 | Structured version Visualization version GIF version | ||
| Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| ccat2s1p2 | ⊢ (𝑌 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cli 14515 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 2 | s1cli 14515 | . . . 4 ⊢ 〈“𝑌”〉 ∈ Word V | |
| 3 | 1z 12508 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 4 | 2z 12510 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 5 | 1lt2 12298 | . . . . . 6 ⊢ 1 < 2 | |
| 6 | fzolb 13567 | . . . . . 6 ⊢ (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2)) | |
| 7 | 3, 4, 5, 6 | mpbir3an 1342 | . . . . 5 ⊢ 1 ∈ (1..^2) |
| 8 | s1len 14516 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
| 9 | s1len 14516 | . . . . . . . 8 ⊢ (♯‘〈“𝑌”〉) = 1 | |
| 10 | 8, 9 | oveq12i 7364 | . . . . . . 7 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = (1 + 1) |
| 11 | 1p1e2 12252 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 12 | 10, 11 | eqtri 2756 | . . . . . 6 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = 2 |
| 13 | 8, 12 | oveq12i 7364 | . . . . 5 ⊢ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) = (1..^2) |
| 14 | 7, 13 | eleqtrri 2832 | . . . 4 ⊢ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) |
| 15 | ccatval2 14487 | . . . 4 ⊢ ((〈“𝑋”〉 ∈ Word V ∧ 〈“𝑌”〉 ∈ Word V ∧ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)))) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉)))) | |
| 16 | 1, 2, 14, 15 | mp3an 1463 | . . 3 ⊢ ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) |
| 17 | 8 | oveq2i 7363 | . . . . 5 ⊢ (1 − (♯‘〈“𝑋”〉)) = (1 − 1) |
| 18 | 1m1e0 12204 | . . . . 5 ⊢ (1 − 1) = 0 | |
| 19 | 17, 18 | eqtri 2756 | . . . 4 ⊢ (1 − (♯‘〈“𝑋”〉)) = 0 |
| 20 | 19 | fveq2i 6831 | . . 3 ⊢ (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = (〈“𝑌”〉‘0) |
| 21 | 16, 20 | eqtri 2756 | . 2 ⊢ ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘0) |
| 22 | s1fv 14520 | . 2 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘0) = 𝑌) | |
| 23 | 21, 22 | eqtrid 2780 | 1 ⊢ (𝑌 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 < clt 11153 − cmin 11351 2c2 12187 ℤcz 12475 ..^cfzo 13556 ♯chash 14239 Word cword 14422 ++ cconcat 14479 〈“cs1 14505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |