Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccat2s1p2 | Structured version Visualization version GIF version |
Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.) |
Ref | Expression |
---|---|
ccat2s1p2 | ⊢ (𝑌 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cli 14320 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
2 | s1cli 14320 | . . . 4 ⊢ 〈“𝑌”〉 ∈ Word V | |
3 | 1z 12360 | . . . . . 6 ⊢ 1 ∈ ℤ | |
4 | 2z 12362 | . . . . . 6 ⊢ 2 ∈ ℤ | |
5 | 1lt2 12154 | . . . . . 6 ⊢ 1 < 2 | |
6 | fzolb 13403 | . . . . . 6 ⊢ (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2)) | |
7 | 3, 4, 5, 6 | mpbir3an 1340 | . . . . 5 ⊢ 1 ∈ (1..^2) |
8 | s1len 14321 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
9 | s1len 14321 | . . . . . . . 8 ⊢ (♯‘〈“𝑌”〉) = 1 | |
10 | 8, 9 | oveq12i 7279 | . . . . . . 7 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = (1 + 1) |
11 | 1p1e2 12108 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
12 | 10, 11 | eqtri 2766 | . . . . . 6 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = 2 |
13 | 8, 12 | oveq12i 7279 | . . . . 5 ⊢ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) = (1..^2) |
14 | 7, 13 | eleqtrri 2838 | . . . 4 ⊢ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) |
15 | ccatval2 14293 | . . . 4 ⊢ ((〈“𝑋”〉 ∈ Word V ∧ 〈“𝑌”〉 ∈ Word V ∧ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)))) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉)))) | |
16 | 1, 2, 14, 15 | mp3an 1460 | . . 3 ⊢ ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) |
17 | 8 | oveq2i 7278 | . . . . 5 ⊢ (1 − (♯‘〈“𝑋”〉)) = (1 − 1) |
18 | 1m1e0 12055 | . . . . 5 ⊢ (1 − 1) = 0 | |
19 | 17, 18 | eqtri 2766 | . . . 4 ⊢ (1 − (♯‘〈“𝑋”〉)) = 0 |
20 | 19 | fveq2i 6769 | . . 3 ⊢ (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = (〈“𝑌”〉‘0) |
21 | 16, 20 | eqtri 2766 | . 2 ⊢ ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘0) |
22 | s1fv 14325 | . 2 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘0) = 𝑌) | |
23 | 21, 22 | eqtrid 2790 | 1 ⊢ (𝑌 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3429 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 0cc0 10881 1c1 10882 + caddc 10884 < clt 11019 − cmin 11215 2c2 12038 ℤcz 12329 ..^cfzo 13392 ♯chash 14054 Word cword 14227 ++ cconcat 14283 〈“cs1 14310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-fzo 13393 df-hash 14055 df-word 14228 df-concat 14284 df-s1 14311 |
This theorem is referenced by: tworepnotupword 46499 |
Copyright terms: Public domain | W3C validator |