| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccat2s1p2 | Structured version Visualization version GIF version | ||
| Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| ccat2s1p2 | ⊢ (𝑌 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cli 14577 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 2 | s1cli 14577 | . . . 4 ⊢ 〈“𝑌”〉 ∈ Word V | |
| 3 | 1z 12570 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 4 | 2z 12572 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 5 | 1lt2 12359 | . . . . . 6 ⊢ 1 < 2 | |
| 6 | fzolb 13633 | . . . . . 6 ⊢ (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2)) | |
| 7 | 3, 4, 5, 6 | mpbir3an 1342 | . . . . 5 ⊢ 1 ∈ (1..^2) |
| 8 | s1len 14578 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
| 9 | s1len 14578 | . . . . . . . 8 ⊢ (♯‘〈“𝑌”〉) = 1 | |
| 10 | 8, 9 | oveq12i 7402 | . . . . . . 7 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = (1 + 1) |
| 11 | 1p1e2 12313 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 12 | 10, 11 | eqtri 2753 | . . . . . 6 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = 2 |
| 13 | 8, 12 | oveq12i 7402 | . . . . 5 ⊢ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) = (1..^2) |
| 14 | 7, 13 | eleqtrri 2828 | . . . 4 ⊢ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) |
| 15 | ccatval2 14550 | . . . 4 ⊢ ((〈“𝑋”〉 ∈ Word V ∧ 〈“𝑌”〉 ∈ Word V ∧ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)))) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉)))) | |
| 16 | 1, 2, 14, 15 | mp3an 1463 | . . 3 ⊢ ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) |
| 17 | 8 | oveq2i 7401 | . . . . 5 ⊢ (1 − (♯‘〈“𝑋”〉)) = (1 − 1) |
| 18 | 1m1e0 12265 | . . . . 5 ⊢ (1 − 1) = 0 | |
| 19 | 17, 18 | eqtri 2753 | . . . 4 ⊢ (1 − (♯‘〈“𝑋”〉)) = 0 |
| 20 | 19 | fveq2i 6864 | . . 3 ⊢ (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = (〈“𝑌”〉‘0) |
| 21 | 16, 20 | eqtri 2753 | . 2 ⊢ ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘0) |
| 22 | s1fv 14582 | . 2 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘0) = 𝑌) | |
| 23 | 21, 22 | eqtrid 2777 | 1 ⊢ (𝑌 ∈ 𝑉 → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 − cmin 11412 2c2 12248 ℤcz 12536 ..^cfzo 13622 ♯chash 14302 Word cword 14485 ++ cconcat 14542 〈“cs1 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 |
| This theorem is referenced by: tworepnotupword 46891 |
| Copyright terms: Public domain | W3C validator |