![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccat2s1p2 | Structured version Visualization version GIF version |
Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
Ref | Expression |
---|---|
ccat2s1p2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cl 13621 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈“𝑋”〉 ∈ Word 𝑉) | |
2 | 1 | adantr 473 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑋”〉 ∈ Word 𝑉) |
3 | s1cl 13621 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → 〈“𝑌”〉 ∈ Word 𝑉) | |
4 | 3 | adantl 474 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑌”〉 ∈ Word 𝑉) |
5 | 1z 11696 | . . . . . 6 ⊢ 1 ∈ ℤ | |
6 | 2z 11698 | . . . . . 6 ⊢ 2 ∈ ℤ | |
7 | 1lt2 11490 | . . . . . 6 ⊢ 1 < 2 | |
8 | fzolb 12730 | . . . . . 6 ⊢ (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2)) | |
9 | 5, 6, 7, 8 | mpbir3an 1442 | . . . . 5 ⊢ 1 ∈ (1..^2) |
10 | s1len 13625 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
11 | s1len 13625 | . . . . . . . 8 ⊢ (♯‘〈“𝑌”〉) = 1 | |
12 | 10, 11 | oveq12i 6891 | . . . . . . 7 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = (1 + 1) |
13 | 1p1e2 11444 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
14 | 12, 13 | eqtri 2822 | . . . . . 6 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = 2 |
15 | 10, 14 | oveq12i 6891 | . . . . 5 ⊢ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) = (1..^2) |
16 | 9, 15 | eleqtrri 2878 | . . . 4 ⊢ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) |
17 | 16 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)))) |
18 | ccatval2 13597 | . . 3 ⊢ ((〈“𝑋”〉 ∈ Word 𝑉 ∧ 〈“𝑌”〉 ∈ Word 𝑉 ∧ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)))) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉)))) | |
19 | 2, 4, 17, 18 | syl3anc 1491 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉)))) |
20 | 10 | oveq2i 6890 | . . . . . . 7 ⊢ (1 − (♯‘〈“𝑋”〉)) = (1 − 1) |
21 | 1m1e0 11384 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
22 | 20, 21 | eqtri 2822 | . . . . . 6 ⊢ (1 − (♯‘〈“𝑋”〉)) = 0 |
23 | 22 | a1i 11 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → (1 − (♯‘〈“𝑋”〉)) = 0) |
24 | 23 | fveq2d 6416 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = (〈“𝑌”〉‘0)) |
25 | s1fv 13629 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘0) = 𝑌) | |
26 | 24, 25 | eqtrd 2834 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = 𝑌) |
27 | 26 | adantl 474 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = 𝑌) |
28 | 19, 27 | eqtrd 2834 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4844 ‘cfv 6102 (class class class)co 6879 0cc0 10225 1c1 10226 + caddc 10228 < clt 10364 − cmin 10557 2c2 11367 ℤcz 11665 ..^cfzo 12719 ♯chash 13369 Word cword 13533 ++ cconcat 13589 〈“cs1 13614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 df-fzo 12720 df-hash 13370 df-word 13534 df-concat 13590 df-s1 13615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |