Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat2s1p2 Structured version   Visualization version   GIF version

Theorem ccat2s1p2 13984
 Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.)
Assertion
Ref Expression
ccat2s1p2 (𝑌𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)

Proof of Theorem ccat2s1p2
StepHypRef Expression
1 s1cli 13957 . . . 4 ⟨“𝑋”⟩ ∈ Word V
2 s1cli 13957 . . . 4 ⟨“𝑌”⟩ ∈ Word V
3 1z 12007 . . . . . 6 1 ∈ ℤ
4 2z 12009 . . . . . 6 2 ∈ ℤ
5 1lt2 11803 . . . . . 6 1 < 2
6 fzolb 13046 . . . . . 6 (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2))
73, 4, 5, 6mpbir3an 1338 . . . . 5 1 ∈ (1..^2)
8 s1len 13958 . . . . . 6 (♯‘⟨“𝑋”⟩) = 1
9 s1len 13958 . . . . . . . 8 (♯‘⟨“𝑌”⟩) = 1
108, 9oveq12i 7158 . . . . . . 7 ((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)) = (1 + 1)
11 1p1e2 11757 . . . . . . 7 (1 + 1) = 2
1210, 11eqtri 2847 . . . . . 6 ((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)) = 2
138, 12oveq12i 7158 . . . . 5 ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩))) = (1..^2)
147, 13eleqtrri 2915 . . . 4 1 ∈ ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)))
15 ccatval2 13930 . . . 4 ((⟨“𝑋”⟩ ∈ Word V ∧ ⟨“𝑌”⟩ ∈ Word V ∧ 1 ∈ ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)))) → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩))))
161, 2, 14, 15mp3an 1458 . . 3 ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩)))
178oveq2i 7157 . . . . 5 (1 − (♯‘⟨“𝑋”⟩)) = (1 − 1)
18 1m1e0 11704 . . . . 5 (1 − 1) = 0
1917, 18eqtri 2847 . . . 4 (1 − (♯‘⟨“𝑋”⟩)) = 0
2019fveq2i 6662 . . 3 (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩))) = (⟨“𝑌”⟩‘0)
2116, 20eqtri 2847 . 2 ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘0)
22 s1fv 13962 . 2 (𝑌𝑉 → (⟨“𝑌”⟩‘0) = 𝑌)
2321, 22syl5eq 2871 1 (𝑌𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  Vcvv 3480   class class class wbr 5053  ‘cfv 6344  (class class class)co 7146  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669   − cmin 10864  2c2 11687  ℤcz 11976  ..^cfzo 13035  ♯chash 13693  Word cword 13864   ++ cconcat 13920  ⟨“cs1 13947 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-hash 13694  df-word 13865  df-concat 13921  df-s1 13948 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator