MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat2s1p2 Structured version   Visualization version   GIF version

Theorem ccat2s1p2 14587
Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.)
Assertion
Ref Expression
ccat2s1p2 (𝑌𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)

Proof of Theorem ccat2s1p2
StepHypRef Expression
1 s1cli 14562 . . . 4 ⟨“𝑋”⟩ ∈ Word V
2 s1cli 14562 . . . 4 ⟨“𝑌”⟩ ∈ Word V
3 1z 12599 . . . . . 6 1 ∈ ℤ
4 2z 12601 . . . . . 6 2 ∈ ℤ
5 1lt2 12390 . . . . . 6 1 < 2
6 fzolb 13645 . . . . . 6 (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2))
73, 4, 5, 6mpbir3an 1340 . . . . 5 1 ∈ (1..^2)
8 s1len 14563 . . . . . 6 (♯‘⟨“𝑋”⟩) = 1
9 s1len 14563 . . . . . . . 8 (♯‘⟨“𝑌”⟩) = 1
108, 9oveq12i 7424 . . . . . . 7 ((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)) = (1 + 1)
11 1p1e2 12344 . . . . . . 7 (1 + 1) = 2
1210, 11eqtri 2759 . . . . . 6 ((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)) = 2
138, 12oveq12i 7424 . . . . 5 ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩))) = (1..^2)
147, 13eleqtrri 2831 . . . 4 1 ∈ ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)))
15 ccatval2 14535 . . . 4 ((⟨“𝑋”⟩ ∈ Word V ∧ ⟨“𝑌”⟩ ∈ Word V ∧ 1 ∈ ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)))) → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩))))
161, 2, 14, 15mp3an 1460 . . 3 ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩)))
178oveq2i 7423 . . . . 5 (1 − (♯‘⟨“𝑋”⟩)) = (1 − 1)
18 1m1e0 12291 . . . . 5 (1 − 1) = 0
1917, 18eqtri 2759 . . . 4 (1 − (♯‘⟨“𝑋”⟩)) = 0
2019fveq2i 6894 . . 3 (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩))) = (⟨“𝑌”⟩‘0)
2116, 20eqtri 2759 . 2 ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘0)
22 s1fv 14567 . 2 (𝑌𝑉 → (⟨“𝑌”⟩‘0) = 𝑌)
2321, 22eqtrid 2783 1 (𝑌𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3473   class class class wbr 5148  cfv 6543  (class class class)co 7412  0cc0 11116  1c1 11117   + caddc 11119   < clt 11255  cmin 11451  2c2 12274  cz 12565  ..^cfzo 13634  chash 14297  Word cword 14471   ++ cconcat 14527  ⟨“cs1 14552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298  df-word 14472  df-concat 14528  df-s1 14553
This theorem is referenced by:  tworepnotupword  46062
  Copyright terms: Public domain W3C validator