MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat2s1p2 Structured version   Visualization version   GIF version

Theorem ccat2s1p2 14579
Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.)
Assertion
Ref Expression
ccat2s1p2 (𝑌𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)

Proof of Theorem ccat2s1p2
StepHypRef Expression
1 s1cli 14554 . . . 4 ⟨“𝑋”⟩ ∈ Word V
2 s1cli 14554 . . . 4 ⟨“𝑌”⟩ ∈ Word V
3 1z 12591 . . . . . 6 1 ∈ ℤ
4 2z 12593 . . . . . 6 2 ∈ ℤ
5 1lt2 12382 . . . . . 6 1 < 2
6 fzolb 13637 . . . . . 6 (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2))
73, 4, 5, 6mpbir3an 1341 . . . . 5 1 ∈ (1..^2)
8 s1len 14555 . . . . . 6 (♯‘⟨“𝑋”⟩) = 1
9 s1len 14555 . . . . . . . 8 (♯‘⟨“𝑌”⟩) = 1
108, 9oveq12i 7420 . . . . . . 7 ((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)) = (1 + 1)
11 1p1e2 12336 . . . . . . 7 (1 + 1) = 2
1210, 11eqtri 2760 . . . . . 6 ((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)) = 2
138, 12oveq12i 7420 . . . . 5 ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩))) = (1..^2)
147, 13eleqtrri 2832 . . . 4 1 ∈ ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)))
15 ccatval2 14527 . . . 4 ((⟨“𝑋”⟩ ∈ Word V ∧ ⟨“𝑌”⟩ ∈ Word V ∧ 1 ∈ ((♯‘⟨“𝑋”⟩)..^((♯‘⟨“𝑋”⟩) + (♯‘⟨“𝑌”⟩)))) → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩))))
161, 2, 14, 15mp3an 1461 . . 3 ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩)))
178oveq2i 7419 . . . . 5 (1 − (♯‘⟨“𝑋”⟩)) = (1 − 1)
18 1m1e0 12283 . . . . 5 (1 − 1) = 0
1917, 18eqtri 2760 . . . 4 (1 − (♯‘⟨“𝑋”⟩)) = 0
2019fveq2i 6894 . . 3 (⟨“𝑌”⟩‘(1 − (♯‘⟨“𝑋”⟩))) = (⟨“𝑌”⟩‘0)
2116, 20eqtri 2760 . 2 ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = (⟨“𝑌”⟩‘0)
22 s1fv 14559 . 2 (𝑌𝑉 → (⟨“𝑌”⟩‘0) = 𝑌)
2321, 22eqtrid 2784 1 (𝑌𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474   class class class wbr 5148  cfv 6543  (class class class)co 7408  0cc0 11109  1c1 11110   + caddc 11112   < clt 11247  cmin 11443  2c2 12266  cz 12557  ..^cfzo 13626  chash 14289  Word cword 14463   ++ cconcat 14519  ⟨“cs1 14544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-concat 14520  df-s1 14545
This theorem is referenced by:  tworepnotupword  45590
  Copyright terms: Public domain W3C validator