MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsval2 Structured version   Visualization version   GIF version

Theorem efgsval2 19663
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsval2 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsval2
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsval 19661 . . 3 ((𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)))
8 s1cl 14567 . . . . . . . . 9 (𝐵𝑊 → ⟨“𝐵”⟩ ∈ Word 𝑊)
9 ccatlen 14540 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)))
108, 9sylan2 593 . . . . . . . 8 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)))
11 s1len 14571 . . . . . . . . 9 (♯‘⟨“𝐵”⟩) = 1
1211oveq2i 7398 . . . . . . . 8 ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)) = ((♯‘𝐴) + 1)
1310, 12eqtrdi 2780 . . . . . . 7 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + 1))
1413oveq1d 7402 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (((♯‘𝐴) + 1) − 1))
15 lencl 14498 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
1615nn0cnd 12505 . . . . . . . . 9 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℂ)
17 ax-1cn 11126 . . . . . . . . 9 1 ∈ ℂ
18 pncan 11427 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴))
1916, 17, 18sylancl 586 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴))
2016addlidd 11375 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (0 + (♯‘𝐴)) = (♯‘𝐴))
2119, 20eqtr4d 2767 . . . . . . 7 (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴)))
2221adantr 480 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴)))
2314, 22eqtrd 2764 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (0 + (♯‘𝐴)))
2423fveq2d 6862 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)) = ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))))
25 simpl 482 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → 𝐴 ∈ Word 𝑊)
268adantl 481 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ⟨“𝐵”⟩ ∈ Word 𝑊)
27 1nn 12197 . . . . . . . 8 1 ∈ ℕ
2811, 27eqeltri 2824 . . . . . . 7 (♯‘⟨“𝐵”⟩) ∈ ℕ
29 lbfzo0 13660 . . . . . . 7 (0 ∈ (0..^(♯‘⟨“𝐵”⟩)) ↔ (♯‘⟨“𝐵”⟩) ∈ ℕ)
3028, 29mpbir 231 . . . . . 6 0 ∈ (0..^(♯‘⟨“𝐵”⟩))
3130a1i 11 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → 0 ∈ (0..^(♯‘⟨“𝐵”⟩)))
32 ccatval3 14544 . . . . 5 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘⟨“𝐵”⟩))) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
3325, 26, 31, 32syl3anc 1373 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
34 s1fv 14575 . . . . 5 (𝐵𝑊 → (⟨“𝐵”⟩‘0) = 𝐵)
3534adantl 481 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (⟨“𝐵”⟩‘0) = 𝐵)
3624, 33, 353eqtrd 2768 . . 3 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)) = 𝐵)
377, 36sylan9eqr 2786 . 2 (((𝐴 ∈ Word 𝑊𝐵𝑊) ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
38373impa 1109 1 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cdif 3911  c0 4296  {csn 4589  cop 4595  cotp 4597   ciun 4955  cmpt 5188   I cid 5532   × cxp 5636  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  cn 12186  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560   splice csplice 14714  ⟨“cs2 14807   ~FG cefg 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561
This theorem is referenced by:  efgsfo  19669  efgredlemd  19674  efgrelexlemb  19680
  Copyright terms: Public domain W3C validator