![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgsval2 | Structured version Visualization version GIF version |
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgsval2 | ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
7 | 1, 2, 3, 4, 5, 6 | efgsval 19764 | . . 3 ⊢ ((𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1))) |
8 | s1cl 14637 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝑊 → 〈“𝐵”〉 ∈ Word 𝑊) | |
9 | ccatlen 14610 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) | |
10 | 8, 9 | sylan2 593 | . . . . . . . 8 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) |
11 | s1len 14641 | . . . . . . . . 9 ⊢ (♯‘〈“𝐵”〉) = 1 | |
12 | 11 | oveq2i 7442 | . . . . . . . 8 ⊢ ((♯‘𝐴) + (♯‘〈“𝐵”〉)) = ((♯‘𝐴) + 1) |
13 | 10, 12 | eqtrdi 2791 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + 1)) |
14 | 13 | oveq1d 7446 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (((♯‘𝐴) + 1) − 1)) |
15 | lencl 14568 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
16 | 15 | nn0cnd 12587 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℂ) |
17 | ax-1cn 11211 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
18 | pncan 11512 | . . . . . . . . 9 ⊢ (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) | |
19 | 16, 17, 18 | sylancl 586 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) |
20 | 16 | addlidd 11460 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (0 + (♯‘𝐴)) = (♯‘𝐴)) |
21 | 19, 20 | eqtr4d 2778 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
23 | 14, 22 | eqtrd 2775 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (0 + (♯‘𝐴))) |
24 | 23 | fveq2d 6911 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴)))) |
25 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ Word 𝑊) | |
26 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 〈“𝐵”〉 ∈ Word 𝑊) |
27 | 1nn 12275 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
28 | 11, 27 | eqeltri 2835 | . . . . . . 7 ⊢ (♯‘〈“𝐵”〉) ∈ ℕ |
29 | lbfzo0 13736 | . . . . . . 7 ⊢ (0 ∈ (0..^(♯‘〈“𝐵”〉)) ↔ (♯‘〈“𝐵”〉) ∈ ℕ) | |
30 | 28, 29 | mpbir 231 | . . . . . 6 ⊢ 0 ∈ (0..^(♯‘〈“𝐵”〉)) |
31 | 30 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 0 ∈ (0..^(♯‘〈“𝐵”〉))) |
32 | ccatval3 14614 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘〈“𝐵”〉))) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) | |
33 | 25, 26, 31, 32 | syl3anc 1370 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) |
34 | s1fv 14645 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (〈“𝐵”〉‘0) = 𝐵) | |
35 | 34 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (〈“𝐵”〉‘0) = 𝐵) |
36 | 24, 33, 35 | 3eqtrd 2779 | . . 3 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = 𝐵) |
37 | 7, 36 | sylan9eqr 2797 | . 2 ⊢ (((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
38 | 37 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∖ cdif 3960 ∅c0 4339 {csn 4631 〈cop 4637 〈cotp 4639 ∪ ciun 4996 ↦ cmpt 5231 I cid 5582 × cxp 5687 dom cdm 5689 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8498 2oc2o 8499 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 − cmin 11490 ℕcn 12264 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 ++ cconcat 14605 〈“cs1 14630 splice csplice 14784 〈“cs2 14877 ~FG cefg 19739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 |
This theorem is referenced by: efgsfo 19772 efgredlemd 19777 efgrelexlemb 19783 |
Copyright terms: Public domain | W3C validator |