| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgsval2 | Structured version Visualization version GIF version | ||
| Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgsval2 | ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | 1, 2, 3, 4, 5, 6 | efgsval 19610 | . . 3 ⊢ ((𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1))) |
| 8 | s1cl 14509 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝑊 → 〈“𝐵”〉 ∈ Word 𝑊) | |
| 9 | ccatlen 14482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) | |
| 10 | 8, 9 | sylan2 593 | . . . . . . . 8 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) |
| 11 | s1len 14513 | . . . . . . . . 9 ⊢ (♯‘〈“𝐵”〉) = 1 | |
| 12 | 11 | oveq2i 7360 | . . . . . . . 8 ⊢ ((♯‘𝐴) + (♯‘〈“𝐵”〉)) = ((♯‘𝐴) + 1) |
| 13 | 10, 12 | eqtrdi 2780 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + 1)) |
| 14 | 13 | oveq1d 7364 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (((♯‘𝐴) + 1) − 1)) |
| 15 | lencl 14440 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
| 16 | 15 | nn0cnd 12447 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℂ) |
| 17 | ax-1cn 11067 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 18 | pncan 11369 | . . . . . . . . 9 ⊢ (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) |
| 20 | 16 | addlidd 11317 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (0 + (♯‘𝐴)) = (♯‘𝐴)) |
| 21 | 19, 20 | eqtr4d 2767 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
| 23 | 14, 22 | eqtrd 2764 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (0 + (♯‘𝐴))) |
| 24 | 23 | fveq2d 6826 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴)))) |
| 25 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ Word 𝑊) | |
| 26 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 〈“𝐵”〉 ∈ Word 𝑊) |
| 27 | 1nn 12139 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 28 | 11, 27 | eqeltri 2824 | . . . . . . 7 ⊢ (♯‘〈“𝐵”〉) ∈ ℕ |
| 29 | lbfzo0 13602 | . . . . . . 7 ⊢ (0 ∈ (0..^(♯‘〈“𝐵”〉)) ↔ (♯‘〈“𝐵”〉) ∈ ℕ) | |
| 30 | 28, 29 | mpbir 231 | . . . . . 6 ⊢ 0 ∈ (0..^(♯‘〈“𝐵”〉)) |
| 31 | 30 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 0 ∈ (0..^(♯‘〈“𝐵”〉))) |
| 32 | ccatval3 14486 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘〈“𝐵”〉))) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) | |
| 33 | 25, 26, 31, 32 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) |
| 34 | s1fv 14517 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (〈“𝐵”〉‘0) = 𝐵) | |
| 35 | 34 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (〈“𝐵”〉‘0) = 𝐵) |
| 36 | 24, 33, 35 | 3eqtrd 2768 | . . 3 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = 𝐵) |
| 37 | 7, 36 | sylan9eqr 2786 | . 2 ⊢ (((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
| 38 | 37 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ∖ cdif 3900 ∅c0 4284 {csn 4577 〈cop 4583 〈cotp 4585 ∪ ciun 4941 ↦ cmpt 5173 I cid 5513 × cxp 5617 dom cdm 5619 ran crn 5620 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1oc1o 8381 2oc2o 8382 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 − cmin 11347 ℕcn 12128 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14502 splice csplice 14655 〈“cs2 14748 ~FG cefg 19585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 |
| This theorem is referenced by: efgsfo 19618 efgredlemd 19623 efgrelexlemb 19629 |
| Copyright terms: Public domain | W3C validator |