![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgsval2 | Structured version Visualization version GIF version |
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgsval2 | ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
7 | 1, 2, 3, 4, 5, 6 | efgsval 19773 | . . 3 ⊢ ((𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1))) |
8 | s1cl 14650 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝑊 → 〈“𝐵”〉 ∈ Word 𝑊) | |
9 | ccatlen 14623 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) | |
10 | 8, 9 | sylan2 592 | . . . . . . . 8 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) |
11 | s1len 14654 | . . . . . . . . 9 ⊢ (♯‘〈“𝐵”〉) = 1 | |
12 | 11 | oveq2i 7459 | . . . . . . . 8 ⊢ ((♯‘𝐴) + (♯‘〈“𝐵”〉)) = ((♯‘𝐴) + 1) |
13 | 10, 12 | eqtrdi 2796 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + 1)) |
14 | 13 | oveq1d 7463 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (((♯‘𝐴) + 1) − 1)) |
15 | lencl 14581 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
16 | 15 | nn0cnd 12615 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℂ) |
17 | ax-1cn 11242 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
18 | pncan 11542 | . . . . . . . . 9 ⊢ (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) | |
19 | 16, 17, 18 | sylancl 585 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) |
20 | 16 | addlidd 11491 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (0 + (♯‘𝐴)) = (♯‘𝐴)) |
21 | 19, 20 | eqtr4d 2783 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
23 | 14, 22 | eqtrd 2780 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (0 + (♯‘𝐴))) |
24 | 23 | fveq2d 6924 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴)))) |
25 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ Word 𝑊) | |
26 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 〈“𝐵”〉 ∈ Word 𝑊) |
27 | 1nn 12304 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
28 | 11, 27 | eqeltri 2840 | . . . . . . 7 ⊢ (♯‘〈“𝐵”〉) ∈ ℕ |
29 | lbfzo0 13756 | . . . . . . 7 ⊢ (0 ∈ (0..^(♯‘〈“𝐵”〉)) ↔ (♯‘〈“𝐵”〉) ∈ ℕ) | |
30 | 28, 29 | mpbir 231 | . . . . . 6 ⊢ 0 ∈ (0..^(♯‘〈“𝐵”〉)) |
31 | 30 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 0 ∈ (0..^(♯‘〈“𝐵”〉))) |
32 | ccatval3 14627 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘〈“𝐵”〉))) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) | |
33 | 25, 26, 31, 32 | syl3anc 1371 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) |
34 | s1fv 14658 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (〈“𝐵”〉‘0) = 𝐵) | |
35 | 34 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (〈“𝐵”〉‘0) = 𝐵) |
36 | 24, 33, 35 | 3eqtrd 2784 | . . 3 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = 𝐵) |
37 | 7, 36 | sylan9eqr 2802 | . 2 ⊢ (((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
38 | 37 | 3impa 1110 | 1 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∅c0 4352 {csn 4648 〈cop 4654 〈cotp 4656 ∪ ciun 5015 ↦ cmpt 5249 I cid 5592 × cxp 5698 dom cdm 5700 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1oc1o 8515 2oc2o 8516 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 − cmin 11520 ℕcn 12293 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 ++ cconcat 14618 〈“cs1 14643 splice csplice 14797 〈“cs2 14890 ~FG cefg 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 |
This theorem is referenced by: efgsfo 19781 efgredlemd 19786 efgrelexlemb 19792 |
Copyright terms: Public domain | W3C validator |