| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgsval2 | Structured version Visualization version GIF version | ||
| Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgsval2 | ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | 1, 2, 3, 4, 5, 6 | efgsval 19643 | . . 3 ⊢ ((𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1))) |
| 8 | s1cl 14510 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝑊 → 〈“𝐵”〉 ∈ Word 𝑊) | |
| 9 | ccatlen 14482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) | |
| 10 | 8, 9 | sylan2 593 | . . . . . . . 8 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) |
| 11 | s1len 14514 | . . . . . . . . 9 ⊢ (♯‘〈“𝐵”〉) = 1 | |
| 12 | 11 | oveq2i 7357 | . . . . . . . 8 ⊢ ((♯‘𝐴) + (♯‘〈“𝐵”〉)) = ((♯‘𝐴) + 1) |
| 13 | 10, 12 | eqtrdi 2782 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + 1)) |
| 14 | 13 | oveq1d 7361 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (((♯‘𝐴) + 1) − 1)) |
| 15 | lencl 14440 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
| 16 | 15 | nn0cnd 12444 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℂ) |
| 17 | ax-1cn 11064 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 18 | pncan 11366 | . . . . . . . . 9 ⊢ (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) |
| 20 | 16 | addlidd 11314 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (0 + (♯‘𝐴)) = (♯‘𝐴)) |
| 21 | 19, 20 | eqtr4d 2769 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴))) |
| 23 | 14, 22 | eqtrd 2766 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (0 + (♯‘𝐴))) |
| 24 | 23 | fveq2d 6826 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴)))) |
| 25 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ Word 𝑊) | |
| 26 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 〈“𝐵”〉 ∈ Word 𝑊) |
| 27 | 1nn 12136 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 28 | 11, 27 | eqeltri 2827 | . . . . . . 7 ⊢ (♯‘〈“𝐵”〉) ∈ ℕ |
| 29 | lbfzo0 13599 | . . . . . . 7 ⊢ (0 ∈ (0..^(♯‘〈“𝐵”〉)) ↔ (♯‘〈“𝐵”〉) ∈ ℕ) | |
| 30 | 28, 29 | mpbir 231 | . . . . . 6 ⊢ 0 ∈ (0..^(♯‘〈“𝐵”〉)) |
| 31 | 30 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → 0 ∈ (0..^(♯‘〈“𝐵”〉))) |
| 32 | ccatval3 14486 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘〈“𝐵”〉))) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) | |
| 33 | 25, 26, 31, 32 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) |
| 34 | s1fv 14518 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (〈“𝐵”〉‘0) = 𝐵) | |
| 35 | 34 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → (〈“𝐵”〉‘0) = 𝐵) |
| 36 | 24, 33, 35 | 3eqtrd 2770 | . . 3 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = 𝐵) |
| 37 | 7, 36 | sylan9eqr 2788 | . 2 ⊢ (((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
| 38 | 37 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3894 ∅c0 4280 {csn 4573 〈cop 4579 〈cotp 4581 ∪ ciun 4939 ↦ cmpt 5170 I cid 5508 × cxp 5612 dom cdm 5614 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1oc1o 8378 2oc2o 8379 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 − cmin 11344 ℕcn 12125 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14503 splice csplice 14656 〈“cs2 14748 ~FG cefg 19618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 |
| This theorem is referenced by: efgsfo 19651 efgredlemd 19656 efgrelexlemb 19662 |
| Copyright terms: Public domain | W3C validator |