MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsval2 Structured version   Visualization version   GIF version

Theorem efgsval2 19766
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsval2 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsval2
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsval 19764 . . 3 ((𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)))
8 s1cl 14637 . . . . . . . . 9 (𝐵𝑊 → ⟨“𝐵”⟩ ∈ Word 𝑊)
9 ccatlen 14610 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)))
108, 9sylan2 593 . . . . . . . 8 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)))
11 s1len 14641 . . . . . . . . 9 (♯‘⟨“𝐵”⟩) = 1
1211oveq2i 7442 . . . . . . . 8 ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)) = ((♯‘𝐴) + 1)
1310, 12eqtrdi 2791 . . . . . . 7 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + 1))
1413oveq1d 7446 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (((♯‘𝐴) + 1) − 1))
15 lencl 14568 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
1615nn0cnd 12587 . . . . . . . . 9 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℂ)
17 ax-1cn 11211 . . . . . . . . 9 1 ∈ ℂ
18 pncan 11512 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴))
1916, 17, 18sylancl 586 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴))
2016addlidd 11460 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (0 + (♯‘𝐴)) = (♯‘𝐴))
2119, 20eqtr4d 2778 . . . . . . 7 (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴)))
2221adantr 480 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴)))
2314, 22eqtrd 2775 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (0 + (♯‘𝐴)))
2423fveq2d 6911 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)) = ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))))
25 simpl 482 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → 𝐴 ∈ Word 𝑊)
268adantl 481 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ⟨“𝐵”⟩ ∈ Word 𝑊)
27 1nn 12275 . . . . . . . 8 1 ∈ ℕ
2811, 27eqeltri 2835 . . . . . . 7 (♯‘⟨“𝐵”⟩) ∈ ℕ
29 lbfzo0 13736 . . . . . . 7 (0 ∈ (0..^(♯‘⟨“𝐵”⟩)) ↔ (♯‘⟨“𝐵”⟩) ∈ ℕ)
3028, 29mpbir 231 . . . . . 6 0 ∈ (0..^(♯‘⟨“𝐵”⟩))
3130a1i 11 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → 0 ∈ (0..^(♯‘⟨“𝐵”⟩)))
32 ccatval3 14614 . . . . 5 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘⟨“𝐵”⟩))) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
3325, 26, 31, 32syl3anc 1370 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
34 s1fv 14645 . . . . 5 (𝐵𝑊 → (⟨“𝐵”⟩‘0) = 𝐵)
3534adantl 481 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (⟨“𝐵”⟩‘0) = 𝐵)
3624, 33, 353eqtrd 2779 . . 3 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)) = 𝐵)
377, 36sylan9eqr 2797 . 2 (((𝐴 ∈ Word 𝑊𝐵𝑊) ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
38373impa 1109 1 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cdif 3960  c0 4339  {csn 4631  cop 4637  cotp 4639   ciun 4996  cmpt 5231   I cid 5582   × cxp 5687  dom cdm 5689  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  1oc1o 8498  2oc2o 8499  cc 11151  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  cn 12264  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605  ⟨“cs1 14630   splice csplice 14784  ⟨“cs2 14877   ~FG cefg 19739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631
This theorem is referenced by:  efgsfo  19772  efgredlemd  19777  efgrelexlemb  19783
  Copyright terms: Public domain W3C validator