MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn1loopb Structured version   Visualization version   GIF version

Theorem clwwlkn1loopb 30024
Description: A word represents a closed walk of length 1 iff this word is a singleton word consisting of a vertex with an attached loop. (Contributed by AV, 11-Feb-2022.)
Assertion
Ref Expression
clwwlkn1loopb (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑊

Proof of Theorem clwwlkn1loopb
StepHypRef Expression
1 clwwlkn1 30022 . 2 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
2 wrdl1exs1 14631 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ∃𝑣 ∈ (Vtx‘𝐺)𝑊 = ⟨“𝑣”⟩)
3 fveq1 6875 . . . . . . . . . . . . . . 15 (𝑊 = ⟨“𝑣”⟩ → (𝑊‘0) = (⟨“𝑣”⟩‘0))
4 s1fv 14628 . . . . . . . . . . . . . . 15 (𝑣 ∈ (Vtx‘𝐺) → (⟨“𝑣”⟩‘0) = 𝑣)
53, 4sylan9eq 2790 . . . . . . . . . . . . . 14 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊‘0) = 𝑣)
65sneqd 4613 . . . . . . . . . . . . 13 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → {(𝑊‘0)} = {𝑣})
76eleq1d 2819 . . . . . . . . . . . 12 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → ({(𝑊‘0)} ∈ (Edg‘𝐺) ↔ {𝑣} ∈ (Edg‘𝐺)))
87biimpd 229 . . . . . . . . . . 11 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → {𝑣} ∈ (Edg‘𝐺)))
98ex 412 . . . . . . . . . 10 (𝑊 = ⟨“𝑣”⟩ → (𝑣 ∈ (Vtx‘𝐺) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → {𝑣} ∈ (Edg‘𝐺))))
109com13 88 . . . . . . . . 9 ({(𝑊‘0)} ∈ (Edg‘𝐺) → (𝑣 ∈ (Vtx‘𝐺) → (𝑊 = ⟨“𝑣”⟩ → {𝑣} ∈ (Edg‘𝐺))))
1110imp 406 . . . . . . . 8 (({(𝑊‘0)} ∈ (Edg‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝑣”⟩ → {𝑣} ∈ (Edg‘𝐺)))
1211ancld 550 . . . . . . 7 (({(𝑊‘0)} ∈ (Edg‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝑣”⟩ → (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
1312reximdva 3153 . . . . . 6 ({(𝑊‘0)} ∈ (Edg‘𝐺) → (∃𝑣 ∈ (Vtx‘𝐺)𝑊 = ⟨“𝑣”⟩ → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
142, 13syl5com 31 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
1514expcom 413 . . . 4 ((♯‘𝑊) = 1 → (𝑊 ∈ Word (Vtx‘𝐺) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))))
16153imp 1110 . . 3 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
17 s1len 14624 . . . . . . . 8 (♯‘⟨“𝑣”⟩) = 1
1817a1i 11 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → (♯‘⟨“𝑣”⟩) = 1)
19 s1cl 14620 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺))
2019adantr 480 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺))
214eqcomd 2741 . . . . . . . . . . 11 (𝑣 ∈ (Vtx‘𝐺) → 𝑣 = (⟨“𝑣”⟩‘0))
2221sneqd 4613 . . . . . . . . . 10 (𝑣 ∈ (Vtx‘𝐺) → {𝑣} = {(⟨“𝑣”⟩‘0)})
2322eleq1d 2819 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → ({𝑣} ∈ (Edg‘𝐺) ↔ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2423biimpd 229 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → ({𝑣} ∈ (Edg‘𝐺) → {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2524imp 406 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))
2618, 20, 253jca 1128 . . . . . 6 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2726adantrl 716 . . . . 5 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
28 fveqeq2 6885 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → ((♯‘𝑊) = 1 ↔ (♯‘⟨“𝑣”⟩) = 1))
29 eleq1 2822 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → (𝑊 ∈ Word (Vtx‘𝐺) ↔ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺)))
303sneqd 4613 . . . . . . . 8 (𝑊 = ⟨“𝑣”⟩ → {(𝑊‘0)} = {(⟨“𝑣”⟩‘0)})
3130eleq1d 2819 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → ({(𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
3228, 29, 313anbi123d 1438 . . . . . 6 (𝑊 = ⟨“𝑣”⟩ → (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))))
3332ad2antrl 728 . . . . 5 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))))
3427, 33mpbird 257 . . . 4 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
3534rexlimiva 3133 . . 3 (∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
3616, 35impbii 209 . 2 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
371, 36bitri 275 1 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  {csn 4601  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130  chash 14348  Word cword 14531  ⟨“cs1 14613  Vtxcvtx 28975  Edgcedg 29026   ClWWalksN cclwwlkn 30005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-s1 14614  df-clwwlk 29963  df-clwwlkn 30006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator