MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn1loopb Structured version   Visualization version   GIF version

Theorem clwwlkn1loopb 29979
Description: A word represents a closed walk of length 1 iff this word is a singleton word consisting of a vertex with an attached loop. (Contributed by AV, 11-Feb-2022.)
Assertion
Ref Expression
clwwlkn1loopb (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑊

Proof of Theorem clwwlkn1loopb
StepHypRef Expression
1 clwwlkn1 29977 . 2 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
2 wrdl1exs1 14585 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ∃𝑣 ∈ (Vtx‘𝐺)𝑊 = ⟨“𝑣”⟩)
3 fveq1 6860 . . . . . . . . . . . . . . 15 (𝑊 = ⟨“𝑣”⟩ → (𝑊‘0) = (⟨“𝑣”⟩‘0))
4 s1fv 14582 . . . . . . . . . . . . . . 15 (𝑣 ∈ (Vtx‘𝐺) → (⟨“𝑣”⟩‘0) = 𝑣)
53, 4sylan9eq 2785 . . . . . . . . . . . . . 14 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊‘0) = 𝑣)
65sneqd 4604 . . . . . . . . . . . . 13 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → {(𝑊‘0)} = {𝑣})
76eleq1d 2814 . . . . . . . . . . . 12 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → ({(𝑊‘0)} ∈ (Edg‘𝐺) ↔ {𝑣} ∈ (Edg‘𝐺)))
87biimpd 229 . . . . . . . . . . 11 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → {𝑣} ∈ (Edg‘𝐺)))
98ex 412 . . . . . . . . . 10 (𝑊 = ⟨“𝑣”⟩ → (𝑣 ∈ (Vtx‘𝐺) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → {𝑣} ∈ (Edg‘𝐺))))
109com13 88 . . . . . . . . 9 ({(𝑊‘0)} ∈ (Edg‘𝐺) → (𝑣 ∈ (Vtx‘𝐺) → (𝑊 = ⟨“𝑣”⟩ → {𝑣} ∈ (Edg‘𝐺))))
1110imp 406 . . . . . . . 8 (({(𝑊‘0)} ∈ (Edg‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝑣”⟩ → {𝑣} ∈ (Edg‘𝐺)))
1211ancld 550 . . . . . . 7 (({(𝑊‘0)} ∈ (Edg‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝑣”⟩ → (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
1312reximdva 3147 . . . . . 6 ({(𝑊‘0)} ∈ (Edg‘𝐺) → (∃𝑣 ∈ (Vtx‘𝐺)𝑊 = ⟨“𝑣”⟩ → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
142, 13syl5com 31 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
1514expcom 413 . . . 4 ((♯‘𝑊) = 1 → (𝑊 ∈ Word (Vtx‘𝐺) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))))
16153imp 1110 . . 3 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
17 s1len 14578 . . . . . . . 8 (♯‘⟨“𝑣”⟩) = 1
1817a1i 11 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → (♯‘⟨“𝑣”⟩) = 1)
19 s1cl 14574 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺))
2019adantr 480 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺))
214eqcomd 2736 . . . . . . . . . . 11 (𝑣 ∈ (Vtx‘𝐺) → 𝑣 = (⟨“𝑣”⟩‘0))
2221sneqd 4604 . . . . . . . . . 10 (𝑣 ∈ (Vtx‘𝐺) → {𝑣} = {(⟨“𝑣”⟩‘0)})
2322eleq1d 2814 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → ({𝑣} ∈ (Edg‘𝐺) ↔ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2423biimpd 229 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → ({𝑣} ∈ (Edg‘𝐺) → {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2524imp 406 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))
2618, 20, 253jca 1128 . . . . . 6 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2726adantrl 716 . . . . 5 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
28 fveqeq2 6870 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → ((♯‘𝑊) = 1 ↔ (♯‘⟨“𝑣”⟩) = 1))
29 eleq1 2817 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → (𝑊 ∈ Word (Vtx‘𝐺) ↔ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺)))
303sneqd 4604 . . . . . . . 8 (𝑊 = ⟨“𝑣”⟩ → {(𝑊‘0)} = {(⟨“𝑣”⟩‘0)})
3130eleq1d 2814 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → ({(𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
3228, 29, 313anbi123d 1438 . . . . . 6 (𝑊 = ⟨“𝑣”⟩ → (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))))
3332ad2antrl 728 . . . . 5 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))))
3427, 33mpbird 257 . . . 4 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
3534rexlimiva 3127 . . 3 (∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
3616, 35impbii 209 . 2 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
371, 36bitri 275 1 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  {csn 4592  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  chash 14302  Word cword 14485  ⟨“cs1 14567  Vtxcvtx 28930  Edgcedg 28981   ClWWalksN cclwwlkn 29960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535  df-s1 14568  df-clwwlk 29918  df-clwwlkn 29961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator