![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccats1val2 | Structured version Visualization version GIF version |
Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.) |
Ref | Expression |
---|---|
ccats1val2 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
2 | s1cl 14650 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) | |
3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 〈“𝑆”〉 ∈ Word 𝑉) |
4 | lencl 14581 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
5 | 4 | nn0zd 12665 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
6 | elfzomin 13788 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
8 | s1len 14654 | . . . . . . . . 9 ⊢ (♯‘〈“𝑆”〉) = 1 | |
9 | 8 | oveq2i 7459 | . . . . . . . 8 ⊢ ((♯‘𝑊) + (♯‘〈“𝑆”〉)) = ((♯‘𝑊) + 1) |
10 | 9 | oveq2i 7459 | . . . . . . 7 ⊢ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) = ((♯‘𝑊)..^((♯‘𝑊) + 1)) |
11 | 7, 10 | eleqtrrdi 2855 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
13 | eleq1 2832 | . . . . . 6 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) | |
14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) |
15 | 12, 14 | mpbird 257 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
16 | 15 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
17 | ccatval2 14626 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉 ∧ 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) | |
18 | 1, 3, 16, 17 | syl3anc 1371 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) |
19 | oveq1 7455 | . . . . 5 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) | |
20 | 19 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) |
21 | 4 | nn0cnd 12615 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ) |
22 | 21 | subidd 11635 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
24 | 20, 23 | eqtrd 2780 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0) |
25 | 24 | fveq2d 6924 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘(𝐼 − (♯‘𝑊))) = (〈“𝑆”〉‘0)) |
26 | s1fv 14658 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉‘0) = 𝑆) | |
27 | 26 | 3ad2ant2 1134 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘0) = 𝑆) |
28 | 18, 25, 27 | 3eqtrd 2784 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 − cmin 11520 ℤcz 12639 ..^cfzo 13711 ♯chash 14379 Word cword 14562 ++ cconcat 14618 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 |
This theorem is referenced by: ccatws1ls 14681 ccatw2s1p1 14684 ccatw2s1p2 14685 gsmsymgrfixlem1 19469 gsmsymgreqlem2 19473 wwlksnext 29926 clwwlkwwlksb 30086 clwwlknonwwlknonb 30138 ccatws1f1olast 32919 chnind 32983 |
Copyright terms: Public domain | W3C validator |