MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1val2 Structured version   Visualization version   GIF version

Theorem ccats1val2 14334
Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.)
Assertion
Ref Expression
ccats1val2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)

Proof of Theorem ccats1val2
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 s1cl 14307 . . . 4 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
323ad2ant2 1133 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ⟨“𝑆”⟩ ∈ Word 𝑉)
4 lencl 14236 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
54nn0zd 12424 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
6 elfzomin 13459 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
75, 6syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
8 s1len 14311 . . . . . . . . 9 (♯‘⟨“𝑆”⟩) = 1
98oveq2i 7286 . . . . . . . 8 ((♯‘𝑊) + (♯‘⟨“𝑆”⟩)) = ((♯‘𝑊) + 1)
109oveq2i 7286 . . . . . . 7 ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))
117, 10eleqtrrdi 2850 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
1211adantr 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
13 eleq1 2826 . . . . . 6 (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1413adantl 482 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1512, 14mpbird 256 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
16153adant2 1130 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
17 ccatval2 14283 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
181, 3, 16, 17syl3anc 1370 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
19 oveq1 7282 . . . . 5 (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
20193ad2ant3 1134 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
214nn0cnd 12295 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
2221subidd 11320 . . . . 5 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0)
23223ad2ant1 1132 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0)
2420, 23eqtrd 2778 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0)
2524fveq2d 6778 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))) = (⟨“𝑆”⟩‘0))
26 s1fv 14315 . . 3 (𝑆𝑉 → (⟨“𝑆”⟩‘0) = 𝑆)
27263ad2ant2 1133 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘0) = 𝑆)
2818, 25, 273eqtrd 2782 1 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  cz 12319  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301
This theorem is referenced by:  ccatws1ls  14343  ccatw2s1p1  14346  ccatw2s1p1OLD  14347  ccatw2s1p2  14348  gsmsymgrfixlem1  19035  gsmsymgreqlem2  19039  wwlksnext  28258  clwwlkwwlksb  28418  clwwlknonwwlknonb  28470
  Copyright terms: Public domain W3C validator