| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccats1val2 | Structured version Visualization version GIF version | ||
| Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| ccats1val2 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
| 2 | s1cl 14514 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 〈“𝑆”〉 ∈ Word 𝑉) |
| 4 | lencl 14444 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 5 | 4 | nn0zd 12502 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
| 6 | elfzomin 13641 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
| 8 | s1len 14518 | . . . . . . . . 9 ⊢ (♯‘〈“𝑆”〉) = 1 | |
| 9 | 8 | oveq2i 7365 | . . . . . . . 8 ⊢ ((♯‘𝑊) + (♯‘〈“𝑆”〉)) = ((♯‘𝑊) + 1) |
| 10 | 9 | oveq2i 7365 | . . . . . . 7 ⊢ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) = ((♯‘𝑊)..^((♯‘𝑊) + 1)) |
| 11 | 7, 10 | eleqtrrdi 2844 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 13 | eleq1 2821 | . . . . . 6 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) | |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) |
| 15 | 12, 14 | mpbird 257 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 16 | 15 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
| 17 | ccatval2 14489 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉 ∧ 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) | |
| 18 | 1, 3, 16, 17 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) |
| 19 | oveq1 7361 | . . . . 5 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) | |
| 20 | 19 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) |
| 21 | 4 | nn0cnd 12453 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ) |
| 22 | 21 | subidd 11469 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
| 23 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
| 24 | 20, 23 | eqtrd 2768 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0) |
| 25 | 24 | fveq2d 6834 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘(𝐼 − (♯‘𝑊))) = (〈“𝑆”〉‘0)) |
| 26 | s1fv 14522 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉‘0) = 𝑆) | |
| 27 | 26 | 3ad2ant2 1134 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘0) = 𝑆) |
| 28 | 18, 25, 27 | 3eqtrd 2772 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 − cmin 11353 ℤcz 12477 ..^cfzo 13558 ♯chash 14241 Word cword 14424 ++ cconcat 14481 〈“cs1 14507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 |
| This theorem is referenced by: ccatws1ls 14545 ccatw2s1p1 14548 ccatw2s1p2 14549 chnind 18531 chnccats1 18535 gsmsymgrfixlem1 19343 gsmsymgreqlem2 19347 wwlksnext 29875 clwwlkwwlksb 30038 clwwlknonwwlknonb 30090 ccatws1f1olast 32942 chnerlem1 47007 |
| Copyright terms: Public domain | W3C validator |