MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1val2 Structured version   Visualization version   GIF version

Theorem ccats1val2 14662
Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.)
Assertion
Ref Expression
ccats1val2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)

Proof of Theorem ccats1val2
StepHypRef Expression
1 simp1 1135 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 s1cl 14637 . . . 4 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
323ad2ant2 1133 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ⟨“𝑆”⟩ ∈ Word 𝑉)
4 lencl 14568 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
54nn0zd 12637 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
6 elfzomin 13773 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
75, 6syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
8 s1len 14641 . . . . . . . . 9 (♯‘⟨“𝑆”⟩) = 1
98oveq2i 7442 . . . . . . . 8 ((♯‘𝑊) + (♯‘⟨“𝑆”⟩)) = ((♯‘𝑊) + 1)
109oveq2i 7442 . . . . . . 7 ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))
117, 10eleqtrrdi 2850 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
1211adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
13 eleq1 2827 . . . . . 6 (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1413adantl 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1512, 14mpbird 257 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
16153adant2 1130 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
17 ccatval2 14613 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
181, 3, 16, 17syl3anc 1370 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
19 oveq1 7438 . . . . 5 (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
20193ad2ant3 1134 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
214nn0cnd 12587 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
2221subidd 11606 . . . . 5 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0)
23223ad2ant1 1132 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0)
2420, 23eqtrd 2775 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0)
2524fveq2d 6911 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))) = (⟨“𝑆”⟩‘0))
26 s1fv 14645 . . 3 (𝑆𝑉 → (⟨“𝑆”⟩‘0) = 𝑆)
27263ad2ant2 1133 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘0) = 𝑆)
2818, 25, 273eqtrd 2779 1 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  cz 12611  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605  ⟨“cs1 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631
This theorem is referenced by:  ccatws1ls  14668  ccatw2s1p1  14671  ccatw2s1p2  14672  gsmsymgrfixlem1  19460  gsmsymgreqlem2  19464  wwlksnext  29923  clwwlkwwlksb  30083  clwwlknonwwlknonb  30135  ccatws1f1olast  32922  chnind  32985
  Copyright terms: Public domain W3C validator