Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccats1val2 | Structured version Visualization version GIF version |
Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.) |
Ref | Expression |
---|---|
ccats1val2 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
2 | s1cl 14003 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) | |
3 | 2 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 〈“𝑆”〉 ∈ Word 𝑉) |
4 | lencl 13932 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
5 | 4 | nn0zd 12124 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
6 | elfzomin 13158 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1))) |
8 | s1len 14007 | . . . . . . . . 9 ⊢ (♯‘〈“𝑆”〉) = 1 | |
9 | 8 | oveq2i 7161 | . . . . . . . 8 ⊢ ((♯‘𝑊) + (♯‘〈“𝑆”〉)) = ((♯‘𝑊) + 1) |
10 | 9 | oveq2i 7161 | . . . . . . 7 ⊢ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) = ((♯‘𝑊)..^((♯‘𝑊) + 1)) |
11 | 7, 10 | eleqtrrdi 2863 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
12 | 11 | adantr 484 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
13 | eleq1 2839 | . . . . . 6 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) | |
14 | 13 | adantl 485 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉))))) |
15 | 12, 14 | mpbird 260 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
16 | 15 | 3adant2 1128 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) |
17 | ccatval2 13979 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑆”〉 ∈ Word 𝑉 ∧ 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘〈“𝑆”〉)))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) | |
18 | 1, 3, 16, 17 | syl3anc 1368 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (〈“𝑆”〉‘(𝐼 − (♯‘𝑊)))) |
19 | oveq1 7157 | . . . . 5 ⊢ (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) | |
20 | 19 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊))) |
21 | 4 | nn0cnd 11996 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ) |
22 | 21 | subidd 11023 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
23 | 22 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0) |
24 | 20, 23 | eqtrd 2793 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0) |
25 | 24 | fveq2d 6662 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘(𝐼 − (♯‘𝑊))) = (〈“𝑆”〉‘0)) |
26 | s1fv 14011 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉‘0) = 𝑆) | |
27 | 26 | 3ad2ant2 1131 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → (〈“𝑆”〉‘0) = 𝑆) |
28 | 18, 25, 27 | 3eqtrd 2797 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 − cmin 10908 ℤcz 12020 ..^cfzo 13082 ♯chash 13740 Word cword 13913 ++ cconcat 13969 〈“cs1 13996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-concat 13970 df-s1 13997 |
This theorem is referenced by: ccatws1ls 14039 ccatw2s1p1 14042 ccatw2s1p1OLD 14043 ccatw2s1p2 14044 gsmsymgrfixlem1 18622 gsmsymgreqlem2 18626 wwlksnext 27778 clwwlkwwlksb 27938 clwwlknonwwlknonb 27990 |
Copyright terms: Public domain | W3C validator |