MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1val2 Structured version   Visualization version   GIF version

Theorem ccats1val2 14665
Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.)
Assertion
Ref Expression
ccats1val2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)

Proof of Theorem ccats1val2
StepHypRef Expression
1 simp1 1137 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 s1cl 14640 . . . 4 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
323ad2ant2 1135 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ⟨“𝑆”⟩ ∈ Word 𝑉)
4 lencl 14571 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
54nn0zd 12639 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
6 elfzomin 13776 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
75, 6syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
8 s1len 14644 . . . . . . . . 9 (♯‘⟨“𝑆”⟩) = 1
98oveq2i 7442 . . . . . . . 8 ((♯‘𝑊) + (♯‘⟨“𝑆”⟩)) = ((♯‘𝑊) + 1)
109oveq2i 7442 . . . . . . 7 ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))
117, 10eleqtrrdi 2852 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
1211adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
13 eleq1 2829 . . . . . 6 (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1413adantl 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1512, 14mpbird 257 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
16153adant2 1132 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
17 ccatval2 14616 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
181, 3, 16, 17syl3anc 1373 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
19 oveq1 7438 . . . . 5 (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
20193ad2ant3 1136 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
214nn0cnd 12589 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
2221subidd 11608 . . . . 5 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0)
23223ad2ant1 1134 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0)
2420, 23eqtrd 2777 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0)
2524fveq2d 6910 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))) = (⟨“𝑆”⟩‘0))
26 s1fv 14648 . . 3 (𝑆𝑉 → (⟨“𝑆”⟩‘0) = 𝑆)
27263ad2ant2 1135 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘0) = 𝑆)
2818, 25, 273eqtrd 2781 1 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  cz 12613  ..^cfzo 13694  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634
This theorem is referenced by:  ccatws1ls  14671  ccatw2s1p1  14674  ccatw2s1p2  14675  gsmsymgrfixlem1  19445  gsmsymgreqlem2  19449  wwlksnext  29913  clwwlkwwlksb  30073  clwwlknonwwlknonb  30125  ccatws1f1olast  32937  chnind  33001  chnccats1  33005
  Copyright terms: Public domain W3C validator