MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1val2 Structured version   Visualization version   GIF version

Theorem ccats1val2 14539
Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.)
Assertion
Ref Expression
ccats1val2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)

Proof of Theorem ccats1val2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 s1cl 14514 . . . 4 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
323ad2ant2 1134 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ⟨“𝑆”⟩ ∈ Word 𝑉)
4 lencl 14444 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
54nn0zd 12502 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
6 elfzomin 13641 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
75, 6syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + 1)))
8 s1len 14518 . . . . . . . . 9 (♯‘⟨“𝑆”⟩) = 1
98oveq2i 7365 . . . . . . . 8 ((♯‘𝑊) + (♯‘⟨“𝑆”⟩)) = ((♯‘𝑊) + 1)
109oveq2i 7365 . . . . . . 7 ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) = ((♯‘𝑊)..^((♯‘𝑊) + 1))
117, 10eleqtrrdi 2844 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
1211adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
13 eleq1 2821 . . . . . 6 (𝐼 = (♯‘𝑊) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1413adantl 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → (𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))) ↔ (♯‘𝑊) ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))))
1512, 14mpbird 257 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
16153adant2 1131 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → 𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩))))
17 ccatval2 14489 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉𝐼 ∈ ((♯‘𝑊)..^((♯‘𝑊) + (♯‘⟨“𝑆”⟩)))) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
181, 3, 16, 17syl3anc 1373 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))))
19 oveq1 7361 . . . . 5 (𝐼 = (♯‘𝑊) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
20193ad2ant3 1135 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = ((♯‘𝑊) − (♯‘𝑊)))
214nn0cnd 12453 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
2221subidd 11469 . . . . 5 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − (♯‘𝑊)) = 0)
23223ad2ant1 1133 . . . 4 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((♯‘𝑊) − (♯‘𝑊)) = 0)
2420, 23eqtrd 2768 . . 3 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (𝐼 − (♯‘𝑊)) = 0)
2524fveq2d 6834 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘(𝐼 − (♯‘𝑊))) = (⟨“𝑆”⟩‘0))
26 s1fv 14522 . . 3 (𝑆𝑉 → (⟨“𝑆”⟩‘0) = 𝑆)
27263ad2ant2 1134 . 2 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → (⟨“𝑆”⟩‘0) = 𝑆)
2818, 25, 273eqtrd 2772 1 ((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018  cmin 11353  cz 12477  ..^cfzo 13558  chash 14241  Word cword 14424   ++ cconcat 14481  ⟨“cs1 14507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-hash 14242  df-word 14425  df-concat 14482  df-s1 14508
This theorem is referenced by:  ccatws1ls  14545  ccatw2s1p1  14548  ccatw2s1p2  14549  chnind  18531  chnccats1  18535  gsmsymgrfixlem1  19343  gsmsymgreqlem2  19347  wwlksnext  29875  clwwlkwwlksb  30038  clwwlknonwwlknonb  30090  ccatws1f1olast  32942  chnerlem1  47007
  Copyright terms: Public domain W3C validator