MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqs1 Structured version   Visualization version   GIF version

Theorem eqs1 14650
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
eqs1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)

Proof of Theorem eqs1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 ((♯‘𝑊) = 1 → (♯‘𝑊) = 1)
2 s1len 14644 . . . . 5 (♯‘⟨“(𝑊‘0)”⟩) = 1
31, 2eqtr4di 2795 . . . 4 ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩))
4 fvex 6919 . . . . . . . 8 (𝑊‘0) ∈ V
5 s1fv 14648 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0))
64, 5ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0)
76eqcomi 2746 . . . . . 6 (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)
8 c0ex 11255 . . . . . . 7 0 ∈ V
9 fveq2 6906 . . . . . . . 8 (𝑥 = 0 → (𝑊𝑥) = (𝑊‘0))
10 fveq2 6906 . . . . . . . 8 (𝑥 = 0 → (⟨“(𝑊‘0)”⟩‘𝑥) = (⟨“(𝑊‘0)”⟩‘0))
119, 10eqeq12d 2753 . . . . . . 7 (𝑥 = 0 → ((𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)))
128, 11ralsn 4681 . . . . . 6 (∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0))
137, 12mpbir 231 . . . . 5 𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)
14 oveq2 7439 . . . . . . 7 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1))
15 fzo01 13786 . . . . . . 7 (0..^1) = {0}
1614, 15eqtrdi 2793 . . . . . 6 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0})
1716raleqdv 3326 . . . . 5 ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
1813, 17mpbiri 258 . . . 4 ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))
193, 18jca 511 . . 3 ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
20 s1cli 14643 . . . 4 ⟨“(𝑊‘0)”⟩ ∈ Word V
21 eqwrd 14595 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word V) → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2220, 21mpan2 691 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2319, 22imbitrrid 246 . 2 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = ⟨“(𝑊‘0)”⟩))
2423imp 406 1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {csn 4626  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  ..^cfzo 13694  chash 14369  Word cword 14552  ⟨“cs1 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-s1 14634
This theorem is referenced by:  wrdl1exs1  14651  wrdl1s1  14652  swrds1  14704  revs1  14803  signsvtn0  34585
  Copyright terms: Public domain W3C validator