![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqs1 | Structured version Visualization version GIF version |
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
Ref | Expression |
---|---|
eqs1 | ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = 1) | |
2 | s1len 14654 | . . . . 5 ⊢ (♯‘〈“(𝑊‘0)”〉) = 1 | |
3 | 1, 2 | eqtr4di 2798 | . . . 4 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉)) |
4 | fvex 6933 | . . . . . . . 8 ⊢ (𝑊‘0) ∈ V | |
5 | s1fv 14658 | . . . . . . . 8 ⊢ ((𝑊‘0) ∈ V → (〈“(𝑊‘0)”〉‘0) = (𝑊‘0)) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (〈“(𝑊‘0)”〉‘0) = (𝑊‘0) |
7 | 6 | eqcomi 2749 | . . . . . 6 ⊢ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0) |
8 | c0ex 11284 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
10 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑥 = 0 → (〈“(𝑊‘0)”〉‘𝑥) = (〈“(𝑊‘0)”〉‘0)) | |
11 | 9, 10 | eqeq12d 2756 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0))) |
12 | 8, 11 | ralsn 4705 | . . . . . 6 ⊢ (∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0)) |
13 | 7, 12 | mpbir 231 | . . . . 5 ⊢ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) |
14 | oveq2 7456 | . . . . . . 7 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1)) | |
15 | fzo01 13798 | . . . . . . 7 ⊢ (0..^1) = {0} | |
16 | 14, 15 | eqtrdi 2796 | . . . . . 6 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0}) |
17 | 16 | raleqdv 3334 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
18 | 13, 17 | mpbiri 258 | . . . 4 ⊢ ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)) |
19 | 3, 18 | jca 511 | . . 3 ⊢ ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
20 | s1cli 14653 | . . . 4 ⊢ 〈“(𝑊‘0)”〉 ∈ Word V | |
21 | eqwrd 14605 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 〈“(𝑊‘0)”〉 ∈ Word V) → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) | |
22 | 20, 21 | mpan2 690 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) |
23 | 19, 22 | imbitrrid 246 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = 〈“(𝑊‘0)”〉)) |
24 | 23 | imp 406 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 {csn 4648 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 ..^cfzo 13711 ♯chash 14379 Word cword 14562 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-s1 14644 |
This theorem is referenced by: wrdl1exs1 14661 wrdl1s1 14662 swrds1 14714 revs1 14813 signsvtn0 34547 |
Copyright terms: Public domain | W3C validator |