![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqs1 | Structured version Visualization version GIF version |
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
Ref | Expression |
---|---|
eqs1 | ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = 1) | |
2 | s1len 14552 | . . . . 5 ⊢ (♯‘⟨“(𝑊‘0)”⟩) = 1 | |
3 | 1, 2 | eqtr4di 2790 | . . . 4 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩)) |
4 | fvex 6901 | . . . . . . . 8 ⊢ (𝑊‘0) ∈ V | |
5 | s1fv 14556 | . . . . . . . 8 ⊢ ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0)) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0) |
7 | 6 | eqcomi 2741 | . . . . . 6 ⊢ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0) |
8 | c0ex 11204 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | fveq2 6888 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
10 | fveq2 6888 | . . . . . . . 8 ⊢ (𝑥 = 0 → (⟨“(𝑊‘0)”⟩‘𝑥) = (⟨“(𝑊‘0)”⟩‘0)) | |
11 | 9, 10 | eqeq12d 2748 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0))) |
12 | 8, 11 | ralsn 4684 | . . . . . 6 ⊢ (∀𝑥 ∈ {0} (𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)) |
13 | 7, 12 | mpbir 230 | . . . . 5 ⊢ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) |
14 | oveq2 7413 | . . . . . . 7 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1)) | |
15 | fzo01 13710 | . . . . . . 7 ⊢ (0..^1) = {0} | |
16 | 14, 15 | eqtrdi 2788 | . . . . . 6 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0}) |
17 | 16 | raleqdv 3325 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))) |
18 | 13, 17 | mpbiri 257 | . . . 4 ⊢ ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)) |
19 | 3, 18 | jca 512 | . . 3 ⊢ ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))) |
20 | s1cli 14551 | . . . 4 ⊢ ⟨“(𝑊‘0)”⟩ ∈ Word V | |
21 | eqwrd 14503 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word V) → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))) | |
22 | 20, 21 | mpan2 689 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))) |
23 | 19, 22 | imbitrrid 245 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = ⟨“(𝑊‘0)”⟩)) |
24 | 23 | imp 407 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 {csn 4627 ‘cfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 ..^cfzo 13623 ♯chash 14286 Word cword 14460 ⟨“cs1 14541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-s1 14542 |
This theorem is referenced by: wrdl1exs1 14559 wrdl1s1 14560 swrds1 14612 revs1 14711 signsvtn0 33569 |
Copyright terms: Public domain | W3C validator |