MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqs1 Structured version   Visualization version   GIF version

Theorem eqs1 14577
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
eqs1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)

Proof of Theorem eqs1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 ((♯‘𝑊) = 1 → (♯‘𝑊) = 1)
2 s1len 14571 . . . . 5 (♯‘⟨“(𝑊‘0)”⟩) = 1
31, 2eqtr4di 2782 . . . 4 ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩))
4 fvex 6871 . . . . . . . 8 (𝑊‘0) ∈ V
5 s1fv 14575 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0))
64, 5ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0)
76eqcomi 2738 . . . . . 6 (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)
8 c0ex 11168 . . . . . . 7 0 ∈ V
9 fveq2 6858 . . . . . . . 8 (𝑥 = 0 → (𝑊𝑥) = (𝑊‘0))
10 fveq2 6858 . . . . . . . 8 (𝑥 = 0 → (⟨“(𝑊‘0)”⟩‘𝑥) = (⟨“(𝑊‘0)”⟩‘0))
119, 10eqeq12d 2745 . . . . . . 7 (𝑥 = 0 → ((𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)))
128, 11ralsn 4645 . . . . . 6 (∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0))
137, 12mpbir 231 . . . . 5 𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)
14 oveq2 7395 . . . . . . 7 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1))
15 fzo01 13708 . . . . . . 7 (0..^1) = {0}
1614, 15eqtrdi 2780 . . . . . 6 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0})
1716raleqdv 3299 . . . . 5 ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
1813, 17mpbiri 258 . . . 4 ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))
193, 18jca 511 . . 3 ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
20 s1cli 14570 . . . 4 ⟨“(𝑊‘0)”⟩ ∈ Word V
21 eqwrd 14522 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word V) → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2220, 21mpan2 691 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2319, 22imbitrrid 246 . 2 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = ⟨“(𝑊‘0)”⟩))
2423imp 406 1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  {csn 4589  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  ..^cfzo 13615  chash 14295  Word cword 14478  ⟨“cs1 14560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-s1 14561
This theorem is referenced by:  wrdl1exs1  14578  wrdl1s1  14579  swrds1  14631  revs1  14730  signsvtn0  34561
  Copyright terms: Public domain W3C validator