| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqs1 | Structured version Visualization version GIF version | ||
| Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
| Ref | Expression |
|---|---|
| eqs1 | ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = 1) | |
| 2 | s1len 14624 | . . . . 5 ⊢ (♯‘〈“(𝑊‘0)”〉) = 1 | |
| 3 | 1, 2 | eqtr4di 2788 | . . . 4 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉)) |
| 4 | fvex 6889 | . . . . . . . 8 ⊢ (𝑊‘0) ∈ V | |
| 5 | s1fv 14628 | . . . . . . . 8 ⊢ ((𝑊‘0) ∈ V → (〈“(𝑊‘0)”〉‘0) = (𝑊‘0)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (〈“(𝑊‘0)”〉‘0) = (𝑊‘0) |
| 7 | 6 | eqcomi 2744 | . . . . . 6 ⊢ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0) |
| 8 | c0ex 11229 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
| 10 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑥 = 0 → (〈“(𝑊‘0)”〉‘𝑥) = (〈“(𝑊‘0)”〉‘0)) | |
| 11 | 9, 10 | eqeq12d 2751 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0))) |
| 12 | 8, 11 | ralsn 4657 | . . . . . 6 ⊢ (∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0)) |
| 13 | 7, 12 | mpbir 231 | . . . . 5 ⊢ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) |
| 14 | oveq2 7413 | . . . . . . 7 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1)) | |
| 15 | fzo01 13763 | . . . . . . 7 ⊢ (0..^1) = {0} | |
| 16 | 14, 15 | eqtrdi 2786 | . . . . . 6 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0}) |
| 17 | 16 | raleqdv 3305 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
| 18 | 13, 17 | mpbiri 258 | . . . 4 ⊢ ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)) |
| 19 | 3, 18 | jca 511 | . . 3 ⊢ ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
| 20 | s1cli 14623 | . . . 4 ⊢ 〈“(𝑊‘0)”〉 ∈ Word V | |
| 21 | eqwrd 14575 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 〈“(𝑊‘0)”〉 ∈ Word V) → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) | |
| 22 | 20, 21 | mpan2 691 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) |
| 23 | 19, 22 | imbitrrid 246 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = 〈“(𝑊‘0)”〉)) |
| 24 | 23 | imp 406 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 {csn 4601 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 ..^cfzo 13671 ♯chash 14348 Word cword 14531 〈“cs1 14613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-s1 14614 |
| This theorem is referenced by: wrdl1exs1 14631 wrdl1s1 14632 swrds1 14684 revs1 14783 signsvtn0 34602 |
| Copyright terms: Public domain | W3C validator |