MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqs1 Structured version   Visualization version   GIF version

Theorem eqs1 14522
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
eqs1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)

Proof of Theorem eqs1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 ((♯‘𝑊) = 1 → (♯‘𝑊) = 1)
2 s1len 14516 . . . . 5 (♯‘⟨“(𝑊‘0)”⟩) = 1
31, 2eqtr4di 2786 . . . 4 ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩))
4 fvex 6841 . . . . . . . 8 (𝑊‘0) ∈ V
5 s1fv 14520 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0))
64, 5ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0)
76eqcomi 2742 . . . . . 6 (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)
8 c0ex 11113 . . . . . . 7 0 ∈ V
9 fveq2 6828 . . . . . . . 8 (𝑥 = 0 → (𝑊𝑥) = (𝑊‘0))
10 fveq2 6828 . . . . . . . 8 (𝑥 = 0 → (⟨“(𝑊‘0)”⟩‘𝑥) = (⟨“(𝑊‘0)”⟩‘0))
119, 10eqeq12d 2749 . . . . . . 7 (𝑥 = 0 → ((𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)))
128, 11ralsn 4633 . . . . . 6 (∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0))
137, 12mpbir 231 . . . . 5 𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)
14 oveq2 7360 . . . . . . 7 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1))
15 fzo01 13649 . . . . . . 7 (0..^1) = {0}
1614, 15eqtrdi 2784 . . . . . 6 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0})
1716raleqdv 3293 . . . . 5 ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
1813, 17mpbiri 258 . . . 4 ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))
193, 18jca 511 . . 3 ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
20 s1cli 14515 . . . 4 ⟨“(𝑊‘0)”⟩ ∈ Word V
21 eqwrd 14466 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word V) → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2220, 21mpan2 691 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2319, 22imbitrrid 246 . 2 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = ⟨“(𝑊‘0)”⟩))
2423imp 406 1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  {csn 4575  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  ..^cfzo 13556  chash 14239  Word cword 14422  ⟨“cs1 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-s1 14506
This theorem is referenced by:  wrdl1exs1  14523  wrdl1s1  14524  swrds1  14576  revs1  14674  signsvtn0  34604
  Copyright terms: Public domain W3C validator