MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqs1 Structured version   Visualization version   GIF version

Theorem eqs1 14647
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
eqs1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)

Proof of Theorem eqs1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 ((♯‘𝑊) = 1 → (♯‘𝑊) = 1)
2 s1len 14641 . . . . 5 (♯‘⟨“(𝑊‘0)”⟩) = 1
31, 2eqtr4di 2793 . . . 4 ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩))
4 fvex 6920 . . . . . . . 8 (𝑊‘0) ∈ V
5 s1fv 14645 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0))
64, 5ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)”⟩‘0) = (𝑊‘0)
76eqcomi 2744 . . . . . 6 (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)
8 c0ex 11253 . . . . . . 7 0 ∈ V
9 fveq2 6907 . . . . . . . 8 (𝑥 = 0 → (𝑊𝑥) = (𝑊‘0))
10 fveq2 6907 . . . . . . . 8 (𝑥 = 0 → (⟨“(𝑊‘0)”⟩‘𝑥) = (⟨“(𝑊‘0)”⟩‘0))
119, 10eqeq12d 2751 . . . . . . 7 (𝑥 = 0 → ((𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0)))
128, 11ralsn 4686 . . . . . 6 (∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ (𝑊‘0) = (⟨“(𝑊‘0)”⟩‘0))
137, 12mpbir 231 . . . . 5 𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)
14 oveq2 7439 . . . . . . 7 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1))
15 fzo01 13783 . . . . . . 7 (0..^1) = {0}
1614, 15eqtrdi 2791 . . . . . 6 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0})
1716raleqdv 3324 . . . . 5 ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
1813, 17mpbiri 258 . . . 4 ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))
193, 18jca 511 . . 3 ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥)))
20 s1cli 14640 . . . 4 ⟨“(𝑊‘0)”⟩ ∈ Word V
21 eqwrd 14592 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word V) → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2220, 21mpan2 691 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“(𝑊‘0)”⟩) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊𝑥) = (⟨“(𝑊‘0)”⟩‘𝑥))))
2319, 22imbitrrid 246 . 2 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = ⟨“(𝑊‘0)”⟩))
2423imp 406 1 ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {csn 4631  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  ..^cfzo 13691  chash 14366  Word cword 14549  ⟨“cs1 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-s1 14631
This theorem is referenced by:  wrdl1exs1  14648  wrdl1s1  14649  swrds1  14701  revs1  14800  signsvtn0  34564
  Copyright terms: Public domain W3C validator