| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqs1 | Structured version Visualization version GIF version | ||
| Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
| Ref | Expression |
|---|---|
| eqs1 | ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = 1) | |
| 2 | s1len 14511 | . . . . 5 ⊢ (♯‘〈“(𝑊‘0)”〉) = 1 | |
| 3 | 1, 2 | eqtr4di 2784 | . . . 4 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉)) |
| 4 | fvex 6835 | . . . . . . . 8 ⊢ (𝑊‘0) ∈ V | |
| 5 | s1fv 14515 | . . . . . . . 8 ⊢ ((𝑊‘0) ∈ V → (〈“(𝑊‘0)”〉‘0) = (𝑊‘0)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (〈“(𝑊‘0)”〉‘0) = (𝑊‘0) |
| 7 | 6 | eqcomi 2740 | . . . . . 6 ⊢ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0) |
| 8 | c0ex 11103 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
| 10 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑥 = 0 → (〈“(𝑊‘0)”〉‘𝑥) = (〈“(𝑊‘0)”〉‘0)) | |
| 11 | 9, 10 | eqeq12d 2747 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0))) |
| 12 | 8, 11 | ralsn 4634 | . . . . . 6 ⊢ (∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0)) |
| 13 | 7, 12 | mpbir 231 | . . . . 5 ⊢ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) |
| 14 | oveq2 7354 | . . . . . . 7 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1)) | |
| 15 | fzo01 13644 | . . . . . . 7 ⊢ (0..^1) = {0} | |
| 16 | 14, 15 | eqtrdi 2782 | . . . . . 6 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0}) |
| 17 | 16 | raleqdv 3292 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
| 18 | 13, 17 | mpbiri 258 | . . . 4 ⊢ ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)) |
| 19 | 3, 18 | jca 511 | . . 3 ⊢ ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
| 20 | s1cli 14510 | . . . 4 ⊢ 〈“(𝑊‘0)”〉 ∈ Word V | |
| 21 | eqwrd 14461 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 〈“(𝑊‘0)”〉 ∈ Word V) → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) | |
| 22 | 20, 21 | mpan2 691 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) |
| 23 | 19, 22 | imbitrrid 246 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = 〈“(𝑊‘0)”〉)) |
| 24 | 23 | imp 406 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {csn 4576 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 ..^cfzo 13551 ♯chash 14234 Word cword 14417 〈“cs1 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-s1 14501 |
| This theorem is referenced by: wrdl1exs1 14518 wrdl1s1 14519 swrds1 14571 revs1 14669 signsvtn0 34578 |
| Copyright terms: Public domain | W3C validator |