Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqs1 | Structured version Visualization version GIF version |
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
Ref | Expression |
---|---|
eqs1 | ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = 1) | |
2 | s1len 14311 | . . . . 5 ⊢ (♯‘〈“(𝑊‘0)”〉) = 1 | |
3 | 1, 2 | eqtr4di 2796 | . . . 4 ⊢ ((♯‘𝑊) = 1 → (♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉)) |
4 | fvex 6787 | . . . . . . . 8 ⊢ (𝑊‘0) ∈ V | |
5 | s1fv 14315 | . . . . . . . 8 ⊢ ((𝑊‘0) ∈ V → (〈“(𝑊‘0)”〉‘0) = (𝑊‘0)) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (〈“(𝑊‘0)”〉‘0) = (𝑊‘0) |
7 | 6 | eqcomi 2747 | . . . . . 6 ⊢ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0) |
8 | c0ex 10969 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
10 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑥 = 0 → (〈“(𝑊‘0)”〉‘𝑥) = (〈“(𝑊‘0)”〉‘0)) | |
11 | 9, 10 | eqeq12d 2754 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0))) |
12 | 8, 11 | ralsn 4617 | . . . . . 6 ⊢ (∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ (𝑊‘0) = (〈“(𝑊‘0)”〉‘0)) |
13 | 7, 12 | mpbir 230 | . . . . 5 ⊢ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) |
14 | oveq2 7283 | . . . . . . 7 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1)) | |
15 | fzo01 13469 | . . . . . . 7 ⊢ (0..^1) = {0} | |
16 | 14, 15 | eqtrdi 2794 | . . . . . 6 ⊢ ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0}) |
17 | 16 | raleqdv 3348 | . . . . 5 ⊢ ((♯‘𝑊) = 1 → (∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥) ↔ ∀𝑥 ∈ {0} (𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
18 | 13, 17 | mpbiri 257 | . . . 4 ⊢ ((♯‘𝑊) = 1 → ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)) |
19 | 3, 18 | jca 512 | . . 3 ⊢ ((♯‘𝑊) = 1 → ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥))) |
20 | s1cli 14310 | . . . 4 ⊢ 〈“(𝑊‘0)”〉 ∈ Word V | |
21 | eqwrd 14260 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 〈“(𝑊‘0)”〉 ∈ Word V) → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) | |
22 | 20, 21 | mpan2 688 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑊 = 〈“(𝑊‘0)”〉 ↔ ((♯‘𝑊) = (♯‘〈“(𝑊‘0)”〉) ∧ ∀𝑥 ∈ (0..^(♯‘𝑊))(𝑊‘𝑥) = (〈“(𝑊‘0)”〉‘𝑥)))) |
23 | 19, 22 | syl5ibr 245 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) = 1 → 𝑊 = 〈“(𝑊‘0)”〉)) |
24 | 23 | imp 407 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 {csn 4561 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 ..^cfzo 13382 ♯chash 14044 Word cword 14217 〈“cs1 14300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-s1 14301 |
This theorem is referenced by: wrdl1exs1 14318 wrdl1s1 14319 swrds1 14379 revs1 14478 signsvtn0 32549 |
Copyright terms: Public domain | W3C validator |