![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrwlkdvde | Structured version Visualization version GIF version |
Description: In a pseudograph, all edges of a walk consisting of different vertices are different. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29263. (Contributed by AV, 17-Jan-2021.) |
Ref | Expression |
---|---|
upgrwlkdvde | β’ ((πΊ β UPGraph β§ πΉ(WalksβπΊ)π β§ Fun β‘π) β Fun β‘πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (VtxβπΊ) = (VtxβπΊ) | |
2 | eqid 2731 | . . . 4 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
3 | 1, 2 | upgriswlk 29166 | . . 3 β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
4 | df-f1 6548 | . . . . . . . . 9 β’ (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ Fun β‘π)) | |
5 | 4 | simplbi2 500 | . . . . . . . 8 β’ (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β (Fun β‘π β π:(0...(β―βπΉ))β1-1β(VtxβπΊ))) |
6 | 5 | 3ad2ant2 1133 | . . . . . . 7 β’ ((πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (Fun β‘π β π:(0...(β―βπΉ))β1-1β(VtxβπΊ))) |
7 | 6 | impcom 407 | . . . . . 6 β’ ((Fun β‘π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β π:(0...(β―βπΉ))β1-1β(VtxβπΊ)) |
8 | simpr1 1193 | . . . . . 6 β’ ((Fun β‘π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β πΉ β Word dom (iEdgβπΊ)) | |
9 | 7, 8 | jca 511 | . . . . 5 β’ ((Fun β‘π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β§ πΉ β Word dom (iEdgβπΊ))) |
10 | simpr3 1195 | . . . . 5 β’ ((Fun β‘π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) | |
11 | upgrwlkdvdelem 29261 | . . . . 5 β’ ((π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β§ πΉ β Word dom (iEdgβπΊ)) β (βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β Fun β‘πΉ)) | |
12 | 9, 10, 11 | sylc 65 | . . . 4 β’ ((Fun β‘π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β Fun β‘πΉ) |
13 | 12 | expcom 413 | . . 3 β’ ((πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (Fun β‘π β Fun β‘πΉ)) |
14 | 3, 13 | syl6bi 253 | . 2 β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β (Fun β‘π β Fun β‘πΉ))) |
15 | 14 | 3imp 1110 | 1 β’ ((πΊ β UPGraph β§ πΉ(WalksβπΊ)π β§ Fun β‘π) β Fun β‘πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 {cpr 4630 class class class wbr 5148 β‘ccnv 5675 dom cdm 5676 Fun wfun 6537 βΆwf 6539 β1-1βwf1 6540 βcfv 6543 (class class class)co 7412 0cc0 11114 1c1 11115 + caddc 11117 ...cfz 13489 ..^cfzo 13632 β―chash 14295 Word cword 14469 Vtxcvtx 28524 iEdgciedg 28525 UPGraphcupgr 28608 Walkscwlks 29121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-edg 28576 df-uhgr 28586 df-upgr 28610 df-wlks 29124 |
This theorem is referenced by: upgrspthswlk 29263 |
Copyright terms: Public domain | W3C validator |