MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpq Structured version   Visualization version   GIF version

Theorem elpq 12126
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elq 12101 . . . . 5 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦))
2 rexcom 3285 . . . . 5 (∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
31, 2bitri 267 . . . 4 (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
4 breq2 4892 . . . . . . . . . . 11 (𝐴 = (𝑧 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑧 / 𝑦)))
5 zre 11736 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
65adantl 475 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ)
7 nnre 11386 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
87adantr 474 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℝ)
9 nngt0 11411 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 < 𝑦)
109adantr 474 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 0 < 𝑦)
11 gt0div 11245 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 < 𝑦) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
126, 8, 10, 11syl3anc 1439 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
1312bicomd 215 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < (𝑧 / 𝑦) ↔ 0 < 𝑧))
144, 13sylan9bb 505 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 ↔ 0 < 𝑧))
15 elnnz 11742 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ ↔ (𝑧 ∈ ℤ ∧ 0 < 𝑧))
1615simplbi2 496 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (0 < 𝑧𝑧 ∈ ℕ))
1716adantl 475 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧𝑧 ∈ ℕ))
1817adantl 475 . . . . . . . . . . . . 13 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧𝑧 ∈ ℕ))
1918imp 397 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝑧 ∈ ℕ)
20 oveq1 6931 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
2120eqeq2d 2788 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑧 / 𝑦)))
2221adantl 475 . . . . . . . . . . . 12 ((((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) ∧ 𝑥 = 𝑧) → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑧 / 𝑦)))
23 simpll 757 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝐴 = (𝑧 / 𝑦))
2419, 22, 23rspcedvd 3518 . . . . . . . . . . 11 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2524ex 403 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2614, 25sylbid 232 . . . . . . . . 9 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2726ex 403 . . . . . . . 8 (𝐴 = (𝑧 / 𝑦) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2827com13 88 . . . . . . 7 (0 < 𝐴 → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2928impl 449 . . . . . 6 (((0 < 𝐴𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3029rexlimdva 3213 . . . . 5 ((0 < 𝐴𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3130reximdva 3198 . . . 4 (0 < 𝐴 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
323, 31syl5bi 234 . . 3 (0 < 𝐴 → (𝐴 ∈ ℚ → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3332impcom 398 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
34 rexcom 3285 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
3533, 34sylibr 226 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wrex 3091   class class class wbr 4888  (class class class)co 6924  cr 10273  0cc0 10274   < clt 10413   / cdiv 11034  cn 11378  cz 11732  cq 12099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-z 11733  df-q 12100
This theorem is referenced by:  elpqb  12127  logbgcd1irr  24976
  Copyright terms: Public domain W3C validator