MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpq Structured version   Visualization version   GIF version

Theorem elpq 12697
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elq 12672 . . . . 5 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦))
2 rexcom 3283 . . . . 5 (∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
31, 2bitri 274 . . . 4 (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
4 breq2 5082 . . . . . . . . . . 11 (𝐴 = (𝑧 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑧 / 𝑦)))
5 zre 12306 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
65adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ)
7 nnre 11963 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
87adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℝ)
9 nngt0 11987 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 < 𝑦)
109adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 0 < 𝑦)
11 gt0div 11824 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 < 𝑦) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
126, 8, 10, 11syl3anc 1369 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
1312bicomd 222 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < (𝑧 / 𝑦) ↔ 0 < 𝑧))
144, 13sylan9bb 509 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 ↔ 0 < 𝑧))
15 elnnz 12312 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ ↔ (𝑧 ∈ ℤ ∧ 0 < 𝑧))
1615simplbi2 500 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (0 < 𝑧𝑧 ∈ ℕ))
1716adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧𝑧 ∈ ℕ))
1817adantl 481 . . . . . . . . . . . . 13 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧𝑧 ∈ ℕ))
1918imp 406 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝑧 ∈ ℕ)
20 oveq1 7275 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
2120eqeq2d 2750 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑧 / 𝑦)))
2221adantl 481 . . . . . . . . . . . 12 ((((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) ∧ 𝑥 = 𝑧) → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑧 / 𝑦)))
23 simpll 763 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝐴 = (𝑧 / 𝑦))
2419, 22, 23rspcedvd 3563 . . . . . . . . . . 11 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2524ex 412 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2614, 25sylbid 239 . . . . . . . . 9 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2726ex 412 . . . . . . . 8 (𝐴 = (𝑧 / 𝑦) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2827com13 88 . . . . . . 7 (0 < 𝐴 → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2928impl 455 . . . . . 6 (((0 < 𝐴𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3029rexlimdva 3214 . . . . 5 ((0 < 𝐴𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3130reximdva 3204 . . . 4 (0 < 𝐴 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
323, 31syl5bi 241 . . 3 (0 < 𝐴 → (𝐴 ∈ ℚ → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3332impcom 407 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
34 rexcom 3283 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
3533, 34sylibr 233 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wrex 3066   class class class wbr 5078  (class class class)co 7268  cr 10854  0cc0 10855   < clt 10993   / cdiv 11615  cn 11956  cz 12302  cq 12670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-z 12303  df-q 12671
This theorem is referenced by:  elpqb  12698  logbgcd1irr  25925
  Copyright terms: Public domain W3C validator