MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpq Structured version   Visualization version   GIF version

Theorem elpq 12875
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elq 12850 . . . . 5 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦))
2 rexcom 3262 . . . . 5 (∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
31, 2bitri 275 . . . 4 (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
4 breq2 5097 . . . . . . . . . . 11 (𝐴 = (𝑧 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑧 / 𝑦)))
5 zre 12479 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
65adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ)
7 nnre 12139 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
87adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℝ)
9 nngt0 12163 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 < 𝑦)
109adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 0 < 𝑦)
11 gt0div 11995 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 < 𝑦) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
126, 8, 10, 11syl3anc 1373 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
1312bicomd 223 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < (𝑧 / 𝑦) ↔ 0 < 𝑧))
144, 13sylan9bb 509 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 ↔ 0 < 𝑧))
15 oveq1 7359 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
1615eqeq2d 2744 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑧 / 𝑦)))
17 elnnz 12485 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ ↔ (𝑧 ∈ ℤ ∧ 0 < 𝑧))
1817simplbi2 500 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (0 < 𝑧𝑧 ∈ ℕ))
1918adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧𝑧 ∈ ℕ))
2019adantl 481 . . . . . . . . . . . . 13 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧𝑧 ∈ ℕ))
2120imp 406 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝑧 ∈ ℕ)
22 simpll 766 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝐴 = (𝑧 / 𝑦))
2316, 21, 22rspcedvdw 3576 . . . . . . . . . . 11 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2423ex 412 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2514, 24sylbid 240 . . . . . . . . 9 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2625ex 412 . . . . . . . 8 (𝐴 = (𝑧 / 𝑦) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2726com13 88 . . . . . . 7 (0 < 𝐴 → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2827impl 455 . . . . . 6 (((0 < 𝐴𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2928rexlimdva 3134 . . . . 5 ((0 < 𝐴𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3029reximdva 3146 . . . 4 (0 < 𝐴 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
313, 30biimtrid 242 . . 3 (0 < 𝐴 → (𝐴 ∈ ℚ → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3231impcom 407 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
33 rexcom 3262 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
3432, 33sylibr 234 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  (class class class)co 7352  cr 11012  0cc0 11013   < clt 11153   / cdiv 11781  cn 12132  cz 12475  cq 12848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-z 12476  df-q 12849
This theorem is referenced by:  elpqb  12876  logbgcd1irr  26732
  Copyright terms: Public domain W3C validator