MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo1fzo0n0 Structured version   Visualization version   GIF version

Theorem fzo1fzo0n0 13083
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
Assertion
Ref Expression
fzo1fzo0n0 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))

Proof of Theorem fzo1fzo0n0
StepHypRef Expression
1 elfzo2 13036 . . 3 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 elnnuz 12270 . . . . . . 7 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
3 nnnn0 11892 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
43adantr 484 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
54adantr 484 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
6 nngt0 11656 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 0 < 𝐾)
7 0red 10633 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℝ)
8 nnre 11632 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
98adantl 485 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℝ)
10 zre 11973 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110adantr 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℝ)
12 lttr 10706 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 9, 11, 12syl3anc 1368 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
14 elnnz 11979 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1514simplbi2 504 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0 < 𝑁𝑁 ∈ ℕ))
1615adantr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (0 < 𝑁𝑁 ∈ ℕ))
1713, 16syld 47 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 𝑁 ∈ ℕ))
1817exp4b 434 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐾 < 𝑁𝑁 ∈ ℕ))))
1918com13 88 . . . . . . . . . . 11 (0 < 𝐾 → (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ))))
206, 19mpcom 38 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ)))
2120imp31 421 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 simpr 488 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
235, 21, 223jca 1125 . . . . . . . 8 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2423exp31 423 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
252, 24sylbir 238 . . . . . 6 (𝐾 ∈ (ℤ‘1) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
26253imp 1108 . . . . 5 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
27 elfzo0 13073 . . . . 5 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2826, 27sylibr 237 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ∈ (0..^𝑁))
29 nnne0 11659 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
302, 29sylbir 238 . . . . 5 (𝐾 ∈ (ℤ‘1) → 𝐾 ≠ 0)
31303ad2ant1 1130 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ≠ 0)
3228, 31jca 515 . . 3 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
331, 32sylbi 220 . 2 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
34 elnnne0 11899 . . . . . 6 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
35 nnge1 11653 . . . . . 6 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
3634, 35sylbir 238 . . . . 5 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → 1 ≤ 𝐾)
37363ad2antl1 1182 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 1 ≤ 𝐾)
38 simpl3 1190 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 < 𝑁)
39 nn0z 11993 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
4039adantr 484 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
41 1zzd 12001 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℤ)
42 nnz 11992 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 485 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4440, 41, 433jca 1125 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
45443adant3 1129 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4645adantr 484 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
47 elfzo 13035 . . . . 5 ((𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4846, 47syl 17 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4937, 38, 48mpbir2and 712 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5027, 49sylanb 584 . 2 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5133, 50impbii 212 1 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cn 11625  0cn0 11885  cz 11969  cuz 12231  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029
This theorem is referenced by:  modprmn0modprm0  16134  crctcshwlkn0  27607  clwwisshclwws  27800  upgr4cycl4dv4e  27970  cycpmco2lem4  30821  iccpartigtl  43940  iccpartgt  43944  modn0mul  44934
  Copyright terms: Public domain W3C validator