MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo1fzo0n0 Structured version   Visualization version   GIF version

Theorem fzo1fzo0n0 13751
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
Assertion
Ref Expression
fzo1fzo0n0 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))

Proof of Theorem fzo1fzo0n0
StepHypRef Expression
1 elfzo2 13699 . . 3 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 elnnuz 12920 . . . . . . 7 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
3 nnnn0 12531 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
43adantr 480 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
54adantr 480 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
6 nngt0 12295 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 0 < 𝐾)
7 0red 11262 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℝ)
8 nnre 12271 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
98adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℝ)
10 zre 12615 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℝ)
12 lttr 11335 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 9, 11, 12syl3anc 1370 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
14 elnnz 12621 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1514simplbi2 500 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0 < 𝑁𝑁 ∈ ℕ))
1615adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (0 < 𝑁𝑁 ∈ ℕ))
1713, 16syld 47 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 𝑁 ∈ ℕ))
1817exp4b 430 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐾 < 𝑁𝑁 ∈ ℕ))))
1918com13 88 . . . . . . . . . . 11 (0 < 𝐾 → (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ))))
206, 19mpcom 38 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ)))
2120imp31 417 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 simpr 484 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
235, 21, 223jca 1127 . . . . . . . 8 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2423exp31 419 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
252, 24sylbir 235 . . . . . 6 (𝐾 ∈ (ℤ‘1) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
26253imp 1110 . . . . 5 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
27 elfzo0 13737 . . . . 5 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2826, 27sylibr 234 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ∈ (0..^𝑁))
29 nnne0 12298 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
302, 29sylbir 235 . . . . 5 (𝐾 ∈ (ℤ‘1) → 𝐾 ≠ 0)
31303ad2ant1 1132 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ≠ 0)
3228, 31jca 511 . . 3 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
331, 32sylbi 217 . 2 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
34 elnnne0 12538 . . . . . 6 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
35 nnge1 12292 . . . . . 6 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
3634, 35sylbir 235 . . . . 5 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → 1 ≤ 𝐾)
37363ad2antl1 1184 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 1 ≤ 𝐾)
38 simpl3 1192 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 < 𝑁)
39 nn0z 12636 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
4039adantr 480 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
41 1zzd 12646 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℤ)
42 nnz 12632 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 481 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4440, 41, 433jca 1127 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
45443adant3 1131 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4645adantr 480 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
47 elfzo 13698 . . . . 5 ((𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4846, 47syl 17 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4937, 38, 48mpbir2and 713 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5027, 49sylanb 581 . 2 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5133, 50impbii 209 1 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   < clt 11293  cle 11294  cn 12264  0cn0 12524  cz 12611  cuz 12876  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692
This theorem is referenced by:  modprmn0modprm0  16841  crctcshwlkn0  29851  clwwisshclwws  30044  upgr4cycl4dv4e  30214  chnind  32985  cycpmco2lem4  33132  iccpartigtl  47348  iccpartgt  47352  modn0mul  48370
  Copyright terms: Public domain W3C validator