MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo1fzo0n0 Structured version   Visualization version   GIF version

Theorem fzo1fzo0n0 13082
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
Assertion
Ref Expression
fzo1fzo0n0 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))

Proof of Theorem fzo1fzo0n0
StepHypRef Expression
1 elfzo2 13035 . . 3 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 elnnuz 12276 . . . . . . 7 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
3 nnnn0 11898 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
43adantr 483 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
54adantr 483 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
6 nngt0 11662 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 0 < 𝐾)
7 0red 10638 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℝ)
8 nnre 11639 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
98adantl 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℝ)
10 zre 11979 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110adantr 483 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℝ)
12 lttr 10711 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 9, 11, 12syl3anc 1367 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
14 elnnz 11985 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1514simplbi2 503 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0 < 𝑁𝑁 ∈ ℕ))
1615adantr 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (0 < 𝑁𝑁 ∈ ℕ))
1713, 16syld 47 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 𝑁 ∈ ℕ))
1817exp4b 433 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐾 < 𝑁𝑁 ∈ ℕ))))
1918com13 88 . . . . . . . . . . 11 (0 < 𝐾 → (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ))))
206, 19mpcom 38 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ)))
2120imp31 420 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 simpr 487 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
235, 21, 223jca 1124 . . . . . . . 8 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2423exp31 422 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
252, 24sylbir 237 . . . . . 6 (𝐾 ∈ (ℤ‘1) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
26253imp 1107 . . . . 5 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
27 elfzo0 13072 . . . . 5 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2826, 27sylibr 236 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ∈ (0..^𝑁))
29 nnne0 11665 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
302, 29sylbir 237 . . . . 5 (𝐾 ∈ (ℤ‘1) → 𝐾 ≠ 0)
31303ad2ant1 1129 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ≠ 0)
3228, 31jca 514 . . 3 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
331, 32sylbi 219 . 2 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
34 elnnne0 11905 . . . . . 6 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
35 nnge1 11659 . . . . . 6 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
3634, 35sylbir 237 . . . . 5 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → 1 ≤ 𝐾)
37363ad2antl1 1181 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 1 ≤ 𝐾)
38 simpl3 1189 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 < 𝑁)
39 nn0z 11999 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
4039adantr 483 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
41 1zzd 12007 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℤ)
42 nnz 11998 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 484 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4440, 41, 433jca 1124 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
45443adant3 1128 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4645adantr 483 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
47 elfzo 13034 . . . . 5 ((𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4846, 47syl 17 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4937, 38, 48mpbir2and 711 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5027, 49sylanb 583 . 2 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5133, 50impbii 211 1 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110  wne 3016   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670  cn 11632  0cn0 11891  cz 11975  cuz 12237  ..^cfzo 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028
This theorem is referenced by:  modprmn0modprm0  16138  crctcshwlkn0  27593  clwwisshclwws  27787  upgr4cycl4dv4e  27958  cycpmco2lem4  30766  iccpartigtl  43576  iccpartgt  43580  modn0mul  44573
  Copyright terms: Public domain W3C validator