Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfneg Structured version   Visualization version   GIF version

Theorem smfneg 43876
Description: The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfneg.x 𝑥𝜑
smfneg.s (𝜑𝑆 ∈ SAlg)
smfneg.a (𝜑𝐴𝑉)
smfneg.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfneg.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smfneg (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfneg
StepHypRef Expression
1 smfneg.x . . 3 𝑥𝜑
2 smfneg.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32recnd 10747 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
43mulm1d 11170 . . . 4 ((𝜑𝑥𝐴) → (-1 · 𝐵) = -𝐵)
54eqcomd 2744 . . 3 ((𝜑𝑥𝐴) → -𝐵 = (-1 · 𝐵))
61, 5mpteq2da 5124 . 2 (𝜑 → (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ (-1 · 𝐵)))
7 smfneg.s . . 3 (𝜑𝑆 ∈ SAlg)
8 smfneg.a . . 3 (𝜑𝐴𝑉)
9 neg1rr 11831 . . . 4 -1 ∈ ℝ
109a1i 11 . . 3 (𝜑 → -1 ∈ ℝ)
11 smfneg.m . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
121, 7, 8, 2, 10, 11smfmulc1 43869 . 2 (𝜑 → (𝑥𝐴 ↦ (-1 · 𝐵)) ∈ (SMblFn‘𝑆))
136, 12eqeltrd 2833 1 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wnf 1790  wcel 2114  cmpt 5110  cfv 6339  (class class class)co 7170  cr 10614  1c1 10616   · cmul 10620  -cneg 10949  SAlgcsalg 43391  SMblFncsmblfn 43775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cc 9935  ax-ac2 9963  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-omul 8136  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-acn 9444  df-ac 9616  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-ioo 12825  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-word 13956  df-concat 14012  df-s1 14039  df-s2 14299  df-s3 14300  df-s4 14301  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-rest 16799  df-salg 43392  df-smblfn 43776
This theorem is referenced by:  smfinflem  43889  smfliminflem  43902
  Copyright terms: Public domain W3C validator