![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfneg | Structured version Visualization version GIF version |
Description: The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
smfneg.x | ⊢ Ⅎ𝑥𝜑 |
smfneg.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfneg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
smfneg.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
smfneg.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Ref | Expression |
---|---|
smfneg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfneg.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | smfneg.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
3 | 2 | recnd 11240 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
4 | 3 | mulm1d 11664 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-1 · 𝐵) = -𝐵) |
5 | 4 | eqcomd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 = (-1 · 𝐵)) |
6 | 1, 5 | mpteq2da 5237 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) = (𝑥 ∈ 𝐴 ↦ (-1 · 𝐵))) |
7 | smfneg.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
8 | smfneg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | neg1rr 12325 | . . . 4 ⊢ -1 ∈ ℝ | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → -1 ∈ ℝ) |
11 | smfneg.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
12 | 1, 7, 8, 2, 10, 11 | smfmulc1 46022 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-1 · 𝐵)) ∈ (SMblFn‘𝑆)) |
13 | 6, 12 | eqeltrd 2825 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1777 ∈ wcel 2098 ↦ cmpt 5222 ‘cfv 6534 (class class class)co 7402 ℝcr 11106 1c1 11108 · cmul 11112 -cneg 11443 SAlgcsalg 45534 SMblFncsmblfn 45921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cc 10427 ax-ac2 10455 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-acn 9934 df-ac 10108 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-n0 12471 df-z 12557 df-uz 12821 df-q 12931 df-rp 12973 df-ioo 13326 df-ico 13328 df-icc 13329 df-fz 13483 df-fzo 13626 df-fl 13755 df-seq 13965 df-exp 14026 df-hash 14289 df-word 14463 df-concat 14519 df-s1 14544 df-s2 14797 df-s3 14798 df-s4 14799 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-rest 17369 df-salg 45535 df-smblfn 45922 |
This theorem is referenced by: smfinflem 46043 smfliminflem 46056 |
Copyright terms: Public domain | W3C validator |