Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smff Structured version   Visualization version   GIF version

Theorem smff 44268
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smff.s (𝜑𝑆 ∈ SAlg)
smff.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smff.d 𝐷 = dom 𝐹
Assertion
Ref Expression
smff (𝜑𝐹:𝐷⟶ℝ)

Proof of Theorem smff
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smff.f . . 3 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2 smff.s . . . 4 (𝜑𝑆 ∈ SAlg)
3 smff.d . . . 4 𝐷 = dom 𝐹
42, 3issmf 44264 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
51, 4mpbid 231 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
65simp2d 1142 1 (𝜑𝐹:𝐷⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  wss 3887   cuni 4839   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cr 10870   < clt 11009  t crest 17131  SAlgcsalg 43849  SMblFncsmblfn 44233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083  df-ico 13085  df-smblfn 44234
This theorem is referenced by:  sssmf  44274  smfsssmf  44279  issmfle  44281  smfpimltxr  44283  issmfgt  44292  issmfge  44305  smflimlem2  44307  smflimlem3  44308  smflimlem4  44309  smflim  44312  smfpimgtxr  44315  smfpimioompt  44320  smfpimioo  44321  smfresal  44322  smfres  44324  smfco  44336  smffmpt  44338  smfsuplem1  44344  smfsuplem3  44346  smfsupxr  44349  smfinflem  44350  smflimsuplem2  44354  smflimsuplem3  44355  smflimsuplem4  44356  smflimsuplem5  44357  smfliminflem  44363
  Copyright terms: Public domain W3C validator