| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smff | Structured version Visualization version GIF version | ||
| Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smff.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smff.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smff.d | ⊢ 𝐷 = dom 𝐹 |
| Ref | Expression |
|---|---|
| smff | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smff.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 2 | smff.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smff.d | . . . 4 ⊢ 𝐷 = dom 𝐹 | |
| 4 | 2, 3 | issmf 46737 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| 5 | 1, 4 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 6 | 5 | simp2d 1143 | 1 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ⊆ wss 3931 ∪ cuni 4888 class class class wbr 5124 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 < clt 11274 ↾t crest 17439 SAlgcsalg 46317 SMblFncsmblfn 46704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ioo 13371 df-ico 13373 df-smblfn 46705 |
| This theorem is referenced by: sssmf 46747 smfsssmf 46752 issmfle 46754 smfpimltxr 46756 issmfgt 46765 issmfge 46779 smflimlem2 46781 smflimlem3 46782 smflimlem4 46783 smflim 46786 smfpimgtxr 46789 smfpimioompt 46795 smfpimioo 46796 smfresal 46797 smfres 46799 smfco 46811 smffmptf 46813 smfsuplem1 46820 smfsuplem3 46822 smfsupxr 46825 smfinflem 46826 smflimsuplem2 46830 smflimsuplem3 46831 smflimsuplem4 46832 smflimsuplem5 46833 smfliminflem 46839 smfpimne 46848 smfpimne2 46849 smfsupdmmbllem 46853 smfinfdmmbllem 46857 |
| Copyright terms: Public domain | W3C validator |