| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smff | Structured version Visualization version GIF version | ||
| Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smff.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smff.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smff.d | ⊢ 𝐷 = dom 𝐹 |
| Ref | Expression |
|---|---|
| smff | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smff.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 2 | smff.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smff.d | . . . 4 ⊢ 𝐷 = dom 𝐹 | |
| 4 | 2, 3 | issmf 46733 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| 5 | 1, 4 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 6 | 5 | simp2d 1143 | 1 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 < clt 11215 ↾t crest 17390 SAlgcsalg 46313 SMblFncsmblfn 46700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 df-ico 13319 df-smblfn 46701 |
| This theorem is referenced by: sssmf 46743 smfsssmf 46748 issmfle 46750 smfpimltxr 46752 issmfgt 46761 issmfge 46775 smflimlem2 46777 smflimlem3 46778 smflimlem4 46779 smflim 46782 smfpimgtxr 46785 smfpimioompt 46791 smfpimioo 46792 smfresal 46793 smfres 46795 smfco 46807 smffmptf 46809 smfsuplem1 46816 smfsuplem3 46818 smfsupxr 46821 smfinflem 46822 smflimsuplem2 46826 smflimsuplem3 46827 smflimsuplem4 46828 smflimsuplem5 46829 smfliminflem 46835 smfpimne 46844 smfpimne2 46845 smfsupdmmbllem 46849 smfinfdmmbllem 46853 |
| Copyright terms: Public domain | W3C validator |