Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smff Structured version   Visualization version   GIF version

Theorem smff 42878
 Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smff.s (𝜑𝑆 ∈ SAlg)
smff.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smff.d 𝐷 = dom 𝐹
Assertion
Ref Expression
smff (𝜑𝐹:𝐷⟶ℝ)

Proof of Theorem smff
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smff.f . . 3 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2 smff.s . . . 4 (𝜑𝑆 ∈ SAlg)
3 smff.d . . . 4 𝐷 = dom 𝐹
42, 3issmf 42874 . . 3 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
51, 4mpbid 233 . 2 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
65simp2d 1137 1 (𝜑𝐹:𝐷⟶ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∀wral 3143  {crab 3147   ⊆ wss 3940  ∪ cuni 4837   class class class wbr 5063  dom cdm 5554  ⟶wf 6348  ‘cfv 6352  (class class class)co 7148  ℝcr 10525   < clt 10664   ↾t crest 16684  SAlgcsalg 42462  SMblFncsmblfn 42846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ioo 12732  df-ico 12734  df-smblfn 42847 This theorem is referenced by:  sssmf  42884  smfsssmf  42889  issmfle  42891  issmfgt  42902  issmfge  42915  smflimlem2  42917  smflimlem3  42918  smflimlem4  42919  smflim  42922  smfpimgtxr  42925  smfpimioompt  42930  smfpimioo  42931  smfresal  42932  smfres  42934  smfco  42946  smffmpt  42948  smfsuplem1  42954  smfsuplem3  42956  smfsupxr  42959  smfinflem  42960  smflimsuplem2  42964  smflimsuplem3  42965  smflimsuplem4  42966  smflimsuplem5  42967  smfliminflem  42973
 Copyright terms: Public domain W3C validator