| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smff | Structured version Visualization version GIF version | ||
| Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smff.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smff.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smff.d | ⊢ 𝐷 = dom 𝐹 |
| Ref | Expression |
|---|---|
| smff | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smff.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 2 | smff.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smff.d | . . . 4 ⊢ 𝐷 = dom 𝐹 | |
| 4 | 2, 3 | issmf 46850 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
| 5 | 1, 4 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 6 | 5 | simp2d 1143 | 1 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∪ cuni 4858 class class class wbr 5093 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 < clt 11153 ↾t crest 17326 SAlgcsalg 46430 SMblFncsmblfn 46817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ioo 13251 df-ico 13253 df-smblfn 46818 |
| This theorem is referenced by: sssmf 46860 smfsssmf 46865 issmfle 46867 smfpimltxr 46869 issmfgt 46878 issmfge 46892 smflimlem2 46894 smflimlem3 46895 smflimlem4 46896 smflim 46899 smfpimgtxr 46902 smfpimioompt 46908 smfpimioo 46909 smfresal 46910 smfres 46912 smfco 46924 smffmptf 46926 smfsuplem1 46933 smfsuplem3 46935 smfsupxr 46938 smfinflem 46939 smflimsuplem2 46943 smflimsuplem3 46944 smflimsuplem4 46945 smflimsuplem5 46946 smfliminflem 46952 smfpimne 46961 smfpimne2 46962 smfsupdmmbllem 46966 smfinfdmmbllem 46970 |
| Copyright terms: Public domain | W3C validator |