![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smff | Structured version Visualization version GIF version |
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smff.s | β’ (π β π β SAlg) |
smff.f | β’ (π β πΉ β (SMblFnβπ)) |
smff.d | β’ π· = dom πΉ |
Ref | Expression |
---|---|
smff | β’ (π β πΉ:π·βΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smff.f | . . 3 β’ (π β πΉ β (SMblFnβπ)) | |
2 | smff.s | . . . 4 β’ (π β π β SAlg) | |
3 | smff.d | . . . 4 β’ π· = dom πΉ | |
4 | 2, 3 | issmf 45430 | . . 3 β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)))) |
5 | 1, 4 | mpbid 231 | . 2 β’ (π β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
6 | 5 | simp2d 1143 | 1 β’ (π β πΉ:π·βΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β wss 3947 βͺ cuni 4907 class class class wbr 5147 dom cdm 5675 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcr 11105 < clt 11244 βΎt crest 17362 SAlgcsalg 45010 SMblFncsmblfn 45397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ioo 13324 df-ico 13326 df-smblfn 45398 |
This theorem is referenced by: sssmf 45440 smfsssmf 45445 issmfle 45447 smfpimltxr 45449 issmfgt 45458 issmfge 45472 smflimlem2 45474 smflimlem3 45475 smflimlem4 45476 smflim 45479 smfpimgtxr 45482 smfpimioompt 45488 smfpimioo 45489 smfresal 45490 smfres 45492 smfco 45504 smffmptf 45506 smfsuplem1 45513 smfsuplem3 45515 smfsupxr 45518 smfinflem 45519 smflimsuplem2 45523 smflimsuplem3 45524 smflimsuplem4 45525 smflimsuplem5 45526 smfliminflem 45532 smfpimne 45541 smfpimne2 45542 smfsupdmmbllem 45546 smfinfdmmbllem 45550 |
Copyright terms: Public domain | W3C validator |