MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvinv Structured version   Visualization version   GIF version

Theorem nvinv 30625
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvinv.1 𝑋 = (BaseSet‘𝑈)
nvinv.2 𝐺 = ( +𝑣𝑈)
nvinv.4 𝑆 = ( ·𝑠OLD𝑈)
nvinv.5 𝑀 = (inv‘𝐺)
Assertion
Ref Expression
nvinv ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))

Proof of Theorem nvinv
StepHypRef Expression
1 eqid 2736 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30601 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvinv.2 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 30589 . . 3 𝐺 = (1st ‘(1st𝑈))
5 nvinv.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30591 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvinv.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30590 . . 3 𝑋 = ran 𝐺
9 nvinv.5 . . 3 𝑀 = (inv‘𝐺)
104, 6, 8, 9vcm 30562 . 2 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
112, 10sylan 580 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  1st c1st 7991  1c1 11135  -cneg 11472  invcgn 30477  CVecOLDcvc 30544  NrmCVeccnv 30570   +𝑣 cpv 30571  BaseSetcba 30572   ·𝑠OLD cns 30573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-neg 11474  df-grpo 30479  df-gid 30480  df-ginv 30481  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-nmcv 30586
This theorem is referenced by:  nvinvfval  30626  nvmval  30628  nvmfval  30630  nvnegneg  30635  nvrinv  30637  nvlinv  30638
  Copyright terms: Public domain W3C validator