![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvinv | Structured version Visualization version GIF version |
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvinv.5 | ⊢ 𝑀 = (inv‘𝐺) |
Ref | Expression |
---|---|
nvinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 30644 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | nvinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 30632 | . . 3 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
5 | nvinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 30634 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | nvinv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 30633 | . . 3 ⊢ 𝑋 = ran 𝐺 |
9 | nvinv.5 | . . 3 ⊢ 𝑀 = (inv‘𝐺) | |
10 | 4, 6, 8, 9 | vcm 30605 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
11 | 2, 10 | sylan 580 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 1c1 11154 -cneg 11491 invcgn 30520 CVecOLDcvc 30587 NrmCVeccnv 30613 +𝑣 cpv 30614 BaseSetcba 30615 ·𝑠OLD cns 30616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 df-grpo 30522 df-gid 30523 df-ginv 30524 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-nmcv 30629 |
This theorem is referenced by: nvinvfval 30669 nvmval 30671 nvmfval 30673 nvnegneg 30678 nvrinv 30680 nvlinv 30681 |
Copyright terms: Public domain | W3C validator |