![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvinv | Structured version Visualization version GIF version |
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvinv.5 | ⊢ 𝑀 = (inv‘𝐺) |
Ref | Expression |
---|---|
nvinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 30340 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | nvinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 30328 | . . 3 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
5 | nvinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 30330 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | nvinv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 30329 | . . 3 ⊢ 𝑋 = ran 𝐺 |
9 | nvinv.5 | . . 3 ⊢ 𝑀 = (inv‘𝐺) | |
10 | 4, 6, 8, 9 | vcm 30301 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
11 | 2, 10 | sylan 579 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6534 (class class class)co 7402 1st c1st 7967 1c1 11108 -cneg 11443 invcgn 30216 CVecOLDcvc 30283 NrmCVeccnv 30309 +𝑣 cpv 30310 BaseSetcba 30311 ·𝑠OLD cns 30312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-ltxr 11251 df-sub 11444 df-neg 11445 df-grpo 30218 df-gid 30219 df-ginv 30220 df-ablo 30270 df-vc 30284 df-nv 30317 df-va 30320 df-ba 30321 df-sm 30322 df-0v 30323 df-nmcv 30325 |
This theorem is referenced by: nvinvfval 30365 nvmval 30367 nvmfval 30369 nvnegneg 30374 nvrinv 30376 nvlinv 30377 |
Copyright terms: Public domain | W3C validator |