| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvinv | Structured version Visualization version GIF version | ||
| Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvinv.5 | ⊢ 𝑀 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| nvinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 2 | 1 | nvvc 30559 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
| 3 | nvinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 4 | 3 | vafval 30547 | . . 3 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| 5 | nvinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 6 | 5 | smfval 30549 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 7 | nvinv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | 7, 3 | bafval 30548 | . . 3 ⊢ 𝑋 = ran 𝐺 |
| 9 | nvinv.5 | . . 3 ⊢ 𝑀 = (inv‘𝐺) | |
| 10 | 4, 6, 8, 9 | vcm 30520 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
| 11 | 2, 10 | sylan 580 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 1c1 11010 -cneg 11348 invcgn 30435 CVecOLDcvc 30502 NrmCVeccnv 30528 +𝑣 cpv 30529 BaseSetcba 30530 ·𝑠OLD cns 30531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-grpo 30437 df-gid 30438 df-ginv 30439 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-nmcv 30544 |
| This theorem is referenced by: nvinvfval 30584 nvmval 30586 nvmfval 30588 nvnegneg 30593 nvrinv 30595 nvlinv 30596 |
| Copyright terms: Public domain | W3C validator |