Proof of Theorem tendoid
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | tendoid.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | tendoid.h | . . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) | 
| 3 |  | eqid 2737 | . . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | 
| 4 | 1, 2, 3 | idltrn 40152 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 5 | 4 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 6 |  | eqid 2737 | . . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 7 |  | eqid 2737 | . . . . . 6
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | 
| 8 |  | tendoid.e | . . . . . 6
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | 
| 9 | 6, 2, 3, 7, 8 | tendotp 40763 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵))) | 
| 10 | 5, 9 | mpd3an3 1464 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵))) | 
| 11 |  | eqid 2737 | . . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 12 | 1, 11, 2, 7 | trlid0 40178 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) | 
| 13 | 12 | adantr 480 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) | 
| 14 | 10, 13 | breqtrd 5169 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾)) | 
| 15 |  | hlop 39363 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 16 | 15 | ad2antrr 726 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝐾 ∈ OP) | 
| 17 | 2, 3, 8 | tendocl 40769 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 18 | 5, 17 | mpd3an3 1464 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 19 | 1, 2, 3, 7 | trlcl 40166 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) | 
| 20 | 18, 19 | syldan 591 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) | 
| 21 | 1, 6, 11 | ople0 39188 | . . . 4
⊢ ((𝐾 ∈ OP ∧
(((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) | 
| 22 | 16, 20, 21 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) | 
| 23 | 14, 22 | mpbid 232 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)) | 
| 24 | 1, 11, 2, 3, 7 | trlid0b 40180 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) | 
| 25 | 18, 24 | syldan 591 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) | 
| 26 | 23, 25 | mpbird 257 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |