Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid Structured version   Visualization version   GIF version

Theorem tendoid 39447
Description: The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoid.b 𝐵 = (Base‘𝐾)
tendoid.h 𝐻 = (LHyp‘𝐾)
tendoid.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))

Proof of Theorem tendoid
StepHypRef Expression
1 tendoid.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 tendoid.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
3 eqid 2731 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41, 2, 3idltrn 38824 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
54adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
6 eqid 2731 . . . . . 6 (le‘𝐾) = (le‘𝐾)
7 eqid 2731 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
8 tendoid.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 2, 3, 7, 8tendotp 39435 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)))
105, 9mpd3an3 1462 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)))
11 eqid 2731 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
121, 11, 2, 7trlid0 38850 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
1312adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
1410, 13breqtrd 5167 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾))
15 hlop 38035 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 724 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝐾 ∈ OP)
172, 3, 8tendocl 39441 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊))
185, 17mpd3an3 1462 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊))
191, 2, 3, 7trlcl 38838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵)
2018, 19syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵)
211, 6, 11ople0 37860 . . . 4 ((𝐾 ∈ OP ∧ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2216, 20, 21syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2314, 22mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))
241, 11, 2, 3, 7trlid0b 38852 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2518, 24syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2623, 25mpbird 256 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5141   I cid 5566  cres 5671  cfv 6532  Basecbs 17126  lecple 17186  0.cp0 18358  OPcops 37845  HLchlt 38023  LHypclh 38658  LTrncltrn 38775  trLctrl 38832  TEndoctendo 39426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-map 8805  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 37849  df-ol 37851  df-oml 37852  df-covers 37939  df-ats 37940  df-atl 37971  df-cvlat 37995  df-hlat 38024  df-lhyp 38662  df-laut 38663  df-ldil 38778  df-ltrn 38779  df-trl 38833  df-tendo 39429
This theorem is referenced by:  tendoeq2  39448  tendo0mulr  39501  tendotr  39504  tendocnv  39695  dvhopN  39790  dihpN  40010
  Copyright terms: Public domain W3C validator