Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid Structured version   Visualization version   GIF version

Theorem tendoid 40792
Description: The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoid.b 𝐵 = (Base‘𝐾)
tendoid.h 𝐻 = (LHyp‘𝐾)
tendoid.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))

Proof of Theorem tendoid
StepHypRef Expression
1 tendoid.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 tendoid.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
3 eqid 2735 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41, 2, 3idltrn 40169 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
54adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
6 eqid 2735 . . . . . 6 (le‘𝐾) = (le‘𝐾)
7 eqid 2735 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
8 tendoid.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 2, 3, 7, 8tendotp 40780 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)))
105, 9mpd3an3 1464 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)))
11 eqid 2735 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
121, 11, 2, 7trlid0 40195 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
1312adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
1410, 13breqtrd 5145 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾))
15 hlop 39380 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝐾 ∈ OP)
172, 3, 8tendocl 40786 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊))
185, 17mpd3an3 1464 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊))
191, 2, 3, 7trlcl 40183 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵)
2018, 19syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵)
211, 6, 11ople0 39205 . . . 4 ((𝐾 ∈ OP ∧ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2216, 20, 21syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2314, 22mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))
241, 11, 2, 3, 7trlid0b 40197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2518, 24syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2623, 25mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119   I cid 5547  cres 5656  cfv 6531  Basecbs 17228  lecple 17278  0.cp0 18433  OPcops 39190  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  trLctrl 40177  TEndoctendo 40771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tendo 40774
This theorem is referenced by:  tendoeq2  40793  tendo0mulr  40846  tendotr  40849  tendocnv  41040  dvhopN  41135  dihpN  41355
  Copyright terms: Public domain W3C validator