Proof of Theorem tendoid
Step | Hyp | Ref
| Expression |
1 | | tendoid.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
2 | | tendoid.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | eqid 2738 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
4 | 1, 2, 3 | idltrn 38164 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
5 | 4 | adantr 481 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
6 | | eqid 2738 |
. . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) |
7 | | eqid 2738 |
. . . . . 6
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
8 | | tendoid.e |
. . . . . 6
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
9 | 6, 2, 3, 7, 8 | tendotp 38775 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵))) |
10 | 5, 9 | mpd3an3 1461 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵))) |
11 | | eqid 2738 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
12 | 1, 11, 2, 7 | trlid0 38190 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
13 | 12 | adantr 481 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
14 | 10, 13 | breqtrd 5100 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾)) |
15 | | hlop 37376 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
16 | 15 | ad2antrr 723 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝐾 ∈ OP) |
17 | 2, 3, 8 | tendocl 38781 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) |
18 | 5, 17 | mpd3an3 1461 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) |
19 | 1, 2, 3, 7 | trlcl 38178 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) |
20 | 18, 19 | syldan 591 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) |
21 | 1, 6, 11 | ople0 37201 |
. . . 4
⊢ ((𝐾 ∈ OP ∧
(((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) |
22 | 16, 20, 21 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) |
23 | 14, 22 | mpbid 231 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)) |
24 | 1, 11, 2, 3, 7 | trlid0b 38192 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) |
25 | 18, 24 | syldan 591 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))) |
26 | 23, 25 | mpbird 256 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |