Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid Structured version   Visualization version   GIF version

Theorem tendoid 38787
Description: The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoid.b 𝐵 = (Base‘𝐾)
tendoid.h 𝐻 = (LHyp‘𝐾)
tendoid.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))

Proof of Theorem tendoid
StepHypRef Expression
1 tendoid.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 tendoid.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41, 2, 3idltrn 38164 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
54adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
6 eqid 2738 . . . . . 6 (le‘𝐾) = (le‘𝐾)
7 eqid 2738 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
8 tendoid.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 2, 3, 7, 8tendotp 38775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)))
105, 9mpd3an3 1461 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)))
11 eqid 2738 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
121, 11, 2, 7trlid0 38190 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
1312adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾))
1410, 13breqtrd 5100 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾))
15 hlop 37376 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 723 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝐾 ∈ OP)
172, 3, 8tendocl 38781 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊))
185, 17mpd3an3 1461 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊))
191, 2, 3, 7trlcl 38178 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵)
2018, 19syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵)
211, 6, 11ople0 37201 . . . 4 ((𝐾 ∈ OP ∧ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2216, 20, 21syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵)))(le‘𝐾)(0.‘𝐾) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2314, 22mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾))
241, 11, 2, 3, 7trlid0b 38192 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆‘( I ↾ 𝐵)) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2518, 24syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘(𝑆‘( I ↾ 𝐵))) = (0.‘𝐾)))
2623, 25mpbird 256 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074   I cid 5488  cres 5591  cfv 6433  Basecbs 16912  lecple 16969  0.cp0 18141  OPcops 37186  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by:  tendoeq2  38788  tendo0mulr  38841  tendotr  38844  tendocnv  39035  dvhopN  39130  dihpN  39350
  Copyright terms: Public domain W3C validator