Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotr Structured version   Visualization version   GIF version

Theorem tendotr 38844
Description: The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
tendotr.b 𝐵 = (Base‘𝐾)
tendotr.h 𝐻 = (LHyp‘𝐾)
tendotr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendotr.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendotr.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendotr.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendotr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendotr
StepHypRef Expression
1 simpl1 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑈𝐸)
3 tendotr.b . . . . . 6 𝐵 = (Base‘𝐾)
4 tendotr.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 tendotr.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
63, 4, 5tendoid 38787 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
71, 2, 6syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
8 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
98fveq2d 6778 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = (𝑈‘( I ↾ 𝐵)))
107, 9, 83eqtr4d 2788 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = 𝐹)
1110fveq2d 6778 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
12 simpl1 1190 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simpl2l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝐸)
14 simpl3 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
15 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
16 tendotr.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 tendotr.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1815, 4, 16, 17, 5tendotp 38775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
1912, 13, 14, 18syl3anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
20 simpl1l 1223 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL)
21 hlatl 37374 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2220, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ AtLat)
234, 16, 5tendocl 38781 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
2412, 13, 14, 23syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ∈ 𝑇)
25 simpl2r 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝑂)
26 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
27 tendotr.o . . . . . . . . 9 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
283, 4, 16, 5, 27tendoid0 38839 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
2912, 13, 14, 26, 28syl112anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
3029necon3bid 2988 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) ≠ ( I ↾ 𝐵) ↔ 𝑈𝑂))
3125, 30mpbird 256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ≠ ( I ↾ 𝐵))
32 eqid 2738 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
333, 32, 4, 16, 17trlnidat 38187 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑈𝐹) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
3412, 24, 31, 33syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
353, 32, 4, 16, 17trlnidat 38187 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3612, 14, 26, 35syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3715, 32atcmp 37325 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3822, 34, 36, 37syl3anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3919, 38mpbid 231 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
4011, 39pm2.61dane 3032 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cmpt 5157   I cid 5488  cres 5591  cfv 6433  Basecbs 16912  lecple 16969  Atomscatm 37277  AtLatcal 37278  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by:  cdleml6  38995
  Copyright terms: Public domain W3C validator