Proof of Theorem tendotr
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl2l 1224 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑈 ∈ 𝐸) |
3 | | tendotr.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
4 | | tendotr.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | tendotr.e |
. . . . . 6
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
6 | 3, 4, 5 | tendoid 38714 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
7 | 1, 2, 6 | syl2anc 583 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
8 | | simpr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) |
9 | 8 | fveq2d 6760 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈‘𝐹) = (𝑈‘( I ↾ 𝐵))) |
10 | 7, 9, 8 | 3eqtr4d 2788 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈‘𝐹) = 𝐹) |
11 | 10 | fveq2d 6760 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑅‘(𝑈‘𝐹)) = (𝑅‘𝐹)) |
12 | | simpl1 1189 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | | simpl2l 1224 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈 ∈ 𝐸) |
14 | | simpl3 1191 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ∈ 𝑇) |
15 | | eqid 2738 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
16 | | tendotr.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
17 | | tendotr.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
18 | 15, 4, 16, 17, 5 | tendotp 38702 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑈‘𝐹))(le‘𝐾)(𝑅‘𝐹)) |
19 | 12, 13, 14, 18 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈‘𝐹))(le‘𝐾)(𝑅‘𝐹)) |
20 | | simpl1l 1222 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL) |
21 | | hlatl 37301 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
22 | 20, 21 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ AtLat) |
23 | 4, 16, 5 | tendocl 38708 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑈‘𝐹) ∈ 𝑇) |
24 | 12, 13, 14, 23 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈‘𝐹) ∈ 𝑇) |
25 | | simpl2r 1225 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈 ≠ 𝑂) |
26 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵)) |
27 | | tendotr.o |
. . . . . . . . 9
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
28 | 3, 4, 16, 5, 27 | tendoid0 38766 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
29 | 12, 13, 14, 26, 28 | syl112anc 1372 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
30 | 29 | necon3bid 2987 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈‘𝐹) ≠ ( I ↾ 𝐵) ↔ 𝑈 ≠ 𝑂)) |
31 | 25, 30 | mpbird 256 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈‘𝐹) ≠ ( I ↾ 𝐵)) |
32 | | eqid 2738 |
. . . . . 6
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
33 | 3, 32, 4, 16, 17 | trlnidat 38114 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝐹) ∈ 𝑇 ∧ (𝑈‘𝐹) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈‘𝐹)) ∈ (Atoms‘𝐾)) |
34 | 12, 24, 31, 33 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈‘𝐹)) ∈ (Atoms‘𝐾)) |
35 | 3, 32, 4, 16, 17 | trlnidat 38114 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ (Atoms‘𝐾)) |
36 | 12, 14, 26, 35 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ (Atoms‘𝐾)) |
37 | 15, 32 | atcmp 37252 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈‘𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅‘𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈‘𝐹))(le‘𝐾)(𝑅‘𝐹) ↔ (𝑅‘(𝑈‘𝐹)) = (𝑅‘𝐹))) |
38 | 22, 34, 36, 37 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑅‘(𝑈‘𝐹))(le‘𝐾)(𝑅‘𝐹) ↔ (𝑅‘(𝑈‘𝐹)) = (𝑅‘𝐹))) |
39 | 19, 38 | mpbid 231 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈‘𝐹)) = (𝑅‘𝐹)) |
40 | 11, 39 | pm2.61dane 3031 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑈 ≠ 𝑂) ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑈‘𝐹)) = (𝑅‘𝐹)) |