Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotr Structured version   Visualization version   GIF version

Theorem tendotr 41002
Description: The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
tendotr.b 𝐵 = (Base‘𝐾)
tendotr.h 𝐻 = (LHyp‘𝐾)
tendotr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendotr.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendotr.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendotr.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendotr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendotr
StepHypRef Expression
1 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2l 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑈𝐸)
3 tendotr.b . . . . . 6 𝐵 = (Base‘𝐾)
4 tendotr.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 tendotr.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
63, 4, 5tendoid 40945 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
71, 2, 6syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
8 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
98fveq2d 6835 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = (𝑈‘( I ↾ 𝐵)))
107, 9, 83eqtr4d 2778 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = 𝐹)
1110fveq2d 6835 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
12 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simpl2l 1227 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝐸)
14 simpl3 1194 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
15 eqid 2733 . . . . 5 (le‘𝐾) = (le‘𝐾)
16 tendotr.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 tendotr.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1815, 4, 16, 17, 5tendotp 40933 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
1912, 13, 14, 18syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
20 simpl1l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL)
21 hlatl 39532 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2220, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ AtLat)
234, 16, 5tendocl 40939 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
2412, 13, 14, 23syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ∈ 𝑇)
25 simpl2r 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝑂)
26 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
27 tendotr.o . . . . . . . . 9 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
283, 4, 16, 5, 27tendoid0 40997 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
2912, 13, 14, 26, 28syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
3029necon3bid 2973 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) ≠ ( I ↾ 𝐵) ↔ 𝑈𝑂))
3125, 30mpbird 257 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ≠ ( I ↾ 𝐵))
32 eqid 2733 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
333, 32, 4, 16, 17trlnidat 40345 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑈𝐹) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
3412, 24, 31, 33syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
353, 32, 4, 16, 17trlnidat 40345 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3612, 14, 26, 35syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3715, 32atcmp 39483 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3822, 34, 36, 37syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3919, 38mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
4011, 39pm2.61dane 3016 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5095  cmpt 5176   I cid 5515  cres 5623  cfv 6489  Basecbs 17127  lecple 17175  Atomscatm 39435  AtLatcal 39436  HLchlt 39522  LHypclh 40156  LTrncltrn 40273  trLctrl 40330  TEndoctendo 40924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-riotaBAD 39125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-undef 8212  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-llines 39670  df-lplanes 39671  df-lvols 39672  df-lines 39673  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331  df-tendo 40927
This theorem is referenced by:  cdleml6  41153
  Copyright terms: Public domain W3C validator