Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotr Structured version   Visualization version   GIF version

Theorem tendotr 40797
Description: The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
tendotr.b 𝐵 = (Base‘𝐾)
tendotr.h 𝐻 = (LHyp‘𝐾)
tendotr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendotr.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendotr.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendotr.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendotr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendotr
StepHypRef Expression
1 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2l 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑈𝐸)
3 tendotr.b . . . . . 6 𝐵 = (Base‘𝐾)
4 tendotr.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 tendotr.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
63, 4, 5tendoid 40740 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
71, 2, 6syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
8 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
98fveq2d 6844 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = (𝑈‘( I ↾ 𝐵)))
107, 9, 83eqtr4d 2774 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑈𝐹) = 𝐹)
1110fveq2d 6844 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
12 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simpl2l 1227 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝐸)
14 simpl3 1194 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
15 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
16 tendotr.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 tendotr.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1815, 4, 16, 17, 5tendotp 40728 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
1912, 13, 14, 18syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹))
20 simpl1l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL)
21 hlatl 39326 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2220, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐾 ∈ AtLat)
234, 16, 5tendocl 40734 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
2412, 13, 14, 23syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ∈ 𝑇)
25 simpl2r 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝑈𝑂)
26 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
27 tendotr.o . . . . . . . . 9 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
283, 4, 16, 5, 27tendoid0 40792 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
2912, 13, 14, 26, 28syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
3029necon3bid 2969 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑈𝐹) ≠ ( I ↾ 𝐵) ↔ 𝑈𝑂))
3125, 30mpbird 257 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑈𝐹) ≠ ( I ↾ 𝐵))
32 eqid 2729 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
333, 32, 4, 16, 17trlnidat 40140 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑈𝐹) ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
3412, 24, 31, 33syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾))
353, 32, 4, 16, 17trlnidat 40140 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3612, 14, 26, 35syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
3715, 32atcmp 39277 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅‘(𝑈𝐹)) ∈ (Atoms‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3822, 34, 36, 37syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ((𝑅‘(𝑈𝐹))(le‘𝐾)(𝑅𝐹) ↔ (𝑅‘(𝑈𝐹)) = (𝑅𝐹)))
3919, 38mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
4011, 39pm2.61dane 3012 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cmpt 5183   I cid 5525  cres 5633  cfv 6499  Basecbs 17155  lecple 17203  Atomscatm 39229  AtLatcal 39230  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125  TEndoctendo 40719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tendo 40722
This theorem is referenced by:  cdleml6  40948
  Copyright terms: Public domain W3C validator