MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni Structured version   Visualization version   GIF version

Theorem txuni 23513
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
txuni.1 𝑋 = 𝑅
txuni.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))

Proof of Theorem txuni
StepHypRef Expression
1 txuni.1 . . . 4 𝑋 = 𝑅
21toptopon 22838 . . 3 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 txuni.2 . . . 4 𝑌 = 𝑆
43toptopon 22838 . . 3 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
5 txtopon 23512 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2anb 598 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
7 toponuni 22835 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
86, 7syl 17 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4867   × cxp 5629  cfv 6499  (class class class)co 7369  Topctop 22814  TopOnctopon 22831   ×t ctx 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-topgen 17383  df-top 22815  df-topon 22832  df-bases 22867  df-tx 23483
This theorem is referenced by:  txunii  23514  txcld  23524  neitx  23528  uptx  23546  txcn  23547  txdis  23553  txnlly  23558  txcmp  23564  txcmpb  23565  hausdiag  23566  txhaus  23568  tx1stc  23571  txkgen  23573  txconn  23610  imasnopn  23611  imasncld  23612  imasncls  23613  utop2nei  24172  utop3cls  24173  qtophaus  33820  txpconn  35213
  Copyright terms: Public domain W3C validator