Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > txuni | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
txuni.1 | ⊢ 𝑋 = ∪ 𝑅 |
txuni.2 | ⊢ 𝑌 = ∪ 𝑆 |
Ref | Expression |
---|---|
txuni | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝑅 | |
2 | 1 | toptopon 22172 | . . 3 ⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
3 | txuni.2 | . . . 4 ⊢ 𝑌 = ∪ 𝑆 | |
4 | 3 | toptopon 22172 | . . 3 ⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
5 | txtopon 22848 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) | |
6 | 2, 4, 5 | syl2anb 599 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
7 | toponuni 22169 | . 2 ⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | |
8 | 6, 7 | syl 17 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∪ cuni 4857 × cxp 5623 ‘cfv 6484 (class class class)co 7342 Topctop 22148 TopOnctopon 22165 ×t ctx 22817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-1st 7904 df-2nd 7905 df-topgen 17252 df-top 22149 df-topon 22166 df-bases 22202 df-tx 22819 |
This theorem is referenced by: txunii 22850 txcld 22860 neitx 22864 uptx 22882 txcn 22883 txdis 22889 txnlly 22894 txcmp 22900 txcmpb 22901 hausdiag 22902 txhaus 22904 tx1stc 22907 txkgen 22909 txconn 22946 imasnopn 22947 imasncld 22948 imasncls 22949 utop2nei 23508 utop3cls 23509 qtophaus 32082 txpconn 33491 |
Copyright terms: Public domain | W3C validator |