MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni Structured version   Visualization version   GIF version

Theorem txuni 22186
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
txuni.1 𝑋 = 𝑅
txuni.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))

Proof of Theorem txuni
StepHypRef Expression
1 txuni.1 . . . 4 𝑋 = 𝑅
21toptopon 21511 . . 3 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 txuni.2 . . . 4 𝑌 = 𝑆
43toptopon 21511 . . 3 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
5 txtopon 22185 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2anb 600 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
7 toponuni 21508 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
86, 7syl 17 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115   cuni 4819   × cxp 5534  cfv 6336  (class class class)co 7138  Topctop 21487  TopOnctopon 21504   ×t ctx 22154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673  df-topgen 16706  df-top 21488  df-topon 21505  df-bases 21540  df-tx 22156
This theorem is referenced by:  txunii  22187  txcld  22197  neitx  22201  uptx  22219  txcn  22220  txdis  22226  txnlly  22231  txcmp  22237  txcmpb  22238  hausdiag  22239  txhaus  22241  tx1stc  22244  txkgen  22246  txconn  22283  imasnopn  22284  imasncld  22285  imasncls  22286  utop2nei  22845  utop3cls  22846  qtophaus  31121  txpconn  32497
  Copyright terms: Public domain W3C validator