![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txuni | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
txuni.1 | ⊢ 𝑋 = ∪ 𝑅 |
txuni.2 | ⊢ 𝑌 = ∪ 𝑆 |
Ref | Expression |
---|---|
txuni | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝑅 | |
2 | 1 | toptopon 21129 | . . 3 ⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
3 | txuni.2 | . . . 4 ⊢ 𝑌 = ∪ 𝑆 | |
4 | 3 | toptopon 21129 | . . 3 ⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
5 | txtopon 21803 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) | |
6 | 2, 4, 5 | syl2anb 591 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
7 | toponuni 21126 | . 2 ⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | |
8 | 6, 7 | syl 17 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∪ cuni 4671 × cxp 5353 ‘cfv 6135 (class class class)co 6922 Topctop 21105 TopOnctopon 21122 ×t ctx 21772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-topgen 16490 df-top 21106 df-topon 21123 df-bases 21158 df-tx 21774 |
This theorem is referenced by: txunii 21805 txcld 21815 neitx 21819 uptx 21837 txcn 21838 txdis 21844 txnlly 21849 txcmp 21855 txcmpb 21856 hausdiag 21857 txhaus 21859 tx1stc 21862 txkgen 21864 txconn 21901 imasnopn 21902 imasncld 21903 imasncls 21904 utop2nei 22462 utop3cls 22463 qtophaus 30501 txpconn 31813 |
Copyright terms: Public domain | W3C validator |