![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txuni | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
txuni.1 | β’ π = βͺ π |
txuni.2 | β’ π = βͺ π |
Ref | Expression |
---|---|
txuni | β’ ((π β Top β§ π β Top) β (π Γ π) = βͺ (π Γt π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txuni.1 | . . . 4 β’ π = βͺ π | |
2 | 1 | toptopon 22639 | . . 3 β’ (π β Top β π β (TopOnβπ)) |
3 | txuni.2 | . . . 4 β’ π = βͺ π | |
4 | 3 | toptopon 22639 | . . 3 β’ (π β Top β π β (TopOnβπ)) |
5 | txtopon 23315 | . . 3 β’ ((π β (TopOnβπ) β§ π β (TopOnβπ)) β (π Γt π) β (TopOnβ(π Γ π))) | |
6 | 2, 4, 5 | syl2anb 598 | . 2 β’ ((π β Top β§ π β Top) β (π Γt π) β (TopOnβ(π Γ π))) |
7 | toponuni 22636 | . 2 β’ ((π Γt π) β (TopOnβ(π Γ π)) β (π Γ π) = βͺ (π Γt π)) | |
8 | 6, 7 | syl 17 | 1 β’ ((π β Top β§ π β Top) β (π Γ π) = βͺ (π Γt π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βͺ cuni 4908 Γ cxp 5674 βcfv 6543 (class class class)co 7411 Topctop 22615 TopOnctopon 22632 Γt ctx 23284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-topgen 17393 df-top 22616 df-topon 22633 df-bases 22669 df-tx 23286 |
This theorem is referenced by: txunii 23317 txcld 23327 neitx 23331 uptx 23349 txcn 23350 txdis 23356 txnlly 23361 txcmp 23367 txcmpb 23368 hausdiag 23369 txhaus 23371 tx1stc 23374 txkgen 23376 txconn 23413 imasnopn 23414 imasncld 23415 imasncls 23416 utop2nei 23975 utop3cls 23976 qtophaus 33102 txpconn 34509 |
Copyright terms: Public domain | W3C validator |