MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni Structured version   Visualization version   GIF version

Theorem txuni 22743
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
txuni.1 𝑋 = 𝑅
txuni.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))

Proof of Theorem txuni
StepHypRef Expression
1 txuni.1 . . . 4 𝑋 = 𝑅
21toptopon 22066 . . 3 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 txuni.2 . . . 4 𝑌 = 𝑆
43toptopon 22066 . . 3 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
5 txtopon 22742 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2anb 598 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
7 toponuni 22063 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
86, 7syl 17 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   cuni 4839   × cxp 5587  cfv 6433  (class class class)co 7275  Topctop 22042  TopOnctopon 22059   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-tx 22713
This theorem is referenced by:  txunii  22744  txcld  22754  neitx  22758  uptx  22776  txcn  22777  txdis  22783  txnlly  22788  txcmp  22794  txcmpb  22795  hausdiag  22796  txhaus  22798  tx1stc  22801  txkgen  22803  txconn  22840  imasnopn  22841  imasncld  22842  imasncls  22843  utop2nei  23402  utop3cls  23403  qtophaus  31786  txpconn  33194
  Copyright terms: Public domain W3C validator