| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txuni | Structured version Visualization version GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| txuni.1 | ⊢ 𝑋 = ∪ 𝑅 |
| txuni.2 | ⊢ 𝑌 = ∪ 𝑆 |
| Ref | Expression |
|---|---|
| txuni | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | 1 | toptopon 22802 | . . 3 ⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
| 3 | txuni.2 | . . . 4 ⊢ 𝑌 = ∪ 𝑆 | |
| 4 | 3 | toptopon 22802 | . . 3 ⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
| 5 | txtopon 23476 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 6 | 2, 4, 5 | syl2anb 598 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 7 | toponuni 22799 | . 2 ⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 × cxp 5617 ‘cfv 6482 (class class class)co 7349 Topctop 22778 TopOnctopon 22795 ×t ctx 23445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-topgen 17347 df-top 22779 df-topon 22796 df-bases 22831 df-tx 23447 |
| This theorem is referenced by: txunii 23478 txcld 23488 neitx 23492 uptx 23510 txcn 23511 txdis 23517 txnlly 23522 txcmp 23528 txcmpb 23529 hausdiag 23530 txhaus 23532 tx1stc 23535 txkgen 23537 txconn 23574 imasnopn 23575 imasncld 23576 imasncls 23577 utop2nei 24136 utop3cls 24137 qtophaus 33819 txpconn 35225 |
| Copyright terms: Public domain | W3C validator |