| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txuni | Structured version Visualization version GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| txuni.1 | ⊢ 𝑋 = ∪ 𝑅 |
| txuni.2 | ⊢ 𝑌 = ∪ 𝑆 |
| Ref | Expression |
|---|---|
| txuni | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | 1 | toptopon 22855 | . . 3 ⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
| 3 | txuni.2 | . . . 4 ⊢ 𝑌 = ∪ 𝑆 | |
| 4 | 3 | toptopon 22855 | . . 3 ⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
| 5 | txtopon 23529 | . . 3 ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 6 | 2, 4, 5 | syl2anb 598 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 7 | toponuni 22852 | . 2 ⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cuni 4883 × cxp 5652 ‘cfv 6531 (class class class)co 7405 Topctop 22831 TopOnctopon 22848 ×t ctx 23498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-topgen 17457 df-top 22832 df-topon 22849 df-bases 22884 df-tx 23500 |
| This theorem is referenced by: txunii 23531 txcld 23541 neitx 23545 uptx 23563 txcn 23564 txdis 23570 txnlly 23575 txcmp 23581 txcmpb 23582 hausdiag 23583 txhaus 23585 tx1stc 23588 txkgen 23590 txconn 23627 imasnopn 23628 imasncld 23629 imasncls 23630 utop2nei 24189 utop3cls 24190 qtophaus 33867 txpconn 35254 |
| Copyright terms: Public domain | W3C validator |