MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni Structured version   Visualization version   GIF version

Theorem txuni 23479
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
txuni.1 𝑋 = 𝑅
txuni.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))

Proof of Theorem txuni
StepHypRef Expression
1 txuni.1 . . . 4 𝑋 = 𝑅
21toptopon 22804 . . 3 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 txuni.2 . . . 4 𝑌 = 𝑆
43toptopon 22804 . . 3 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
5 txtopon 23478 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2anb 598 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
7 toponuni 22801 . 2 ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
86, 7syl 17 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4871   × cxp 5636  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-tx 23449
This theorem is referenced by:  txunii  23480  txcld  23490  neitx  23494  uptx  23512  txcn  23513  txdis  23519  txnlly  23524  txcmp  23530  txcmpb  23531  hausdiag  23532  txhaus  23534  tx1stc  23537  txkgen  23539  txconn  23576  imasnopn  23577  imasncld  23578  imasncls  23579  utop2nei  24138  utop3cls  24139  qtophaus  33826  txpconn  35219
  Copyright terms: Public domain W3C validator