| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txunii | Structured version Visualization version GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| txunii.1 | ⊢ 𝑅 ∈ Top |
| txunii.2 | ⊢ 𝑆 ∈ Top |
| txunii.3 | ⊢ 𝑋 = ∪ 𝑅 |
| txunii.4 | ⊢ 𝑌 = ∪ 𝑆 |
| Ref | Expression |
|---|---|
| txunii | ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txunii.1 | . 2 ⊢ 𝑅 ∈ Top | |
| 2 | txunii.2 | . 2 ⊢ 𝑆 ∈ Top | |
| 3 | txunii.3 | . . 3 ⊢ 𝑋 = ∪ 𝑅 | |
| 4 | txunii.4 | . . 3 ⊢ 𝑌 = ∪ 𝑆 | |
| 5 | 3, 4 | txuni 23477 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 × cxp 5617 (class class class)co 7349 Topctop 22778 ×t ctx 23445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-topgen 17347 df-top 22779 df-topon 22796 df-bases 22831 df-tx 23447 |
| This theorem is referenced by: txindis 23519 cxpcn3 26656 tpr2rico 33895 raddcn 33912 sxbrsigalem3 34256 dya2iocucvr 34268 sxbrsigalem1 34269 txsconnlem 35233 cvmlift2lem7 35302 cvmlift2lem9 35304 cvmlift2lem10 35305 cvmlift2lem12 35307 cvmlift2lem13 35308 cvmliftphtlem 35310 |
| Copyright terms: Public domain | W3C validator |