MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txunii Structured version   Visualization version   GIF version

Theorem txunii 23541
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
txunii.1 𝑅 ∈ Top
txunii.2 𝑆 ∈ Top
txunii.3 𝑋 = 𝑅
txunii.4 𝑌 = 𝑆
Assertion
Ref Expression
txunii (𝑋 × 𝑌) = (𝑅 ×t 𝑆)

Proof of Theorem txunii
StepHypRef Expression
1 txunii.1 . 2 𝑅 ∈ Top
2 txunii.2 . 2 𝑆 ∈ Top
3 txunii.3 . . 3 𝑋 = 𝑅
4 txunii.4 . . 3 𝑌 = 𝑆
53, 4txuni 23540 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
61, 2, 5mp2an 690 1 (𝑋 × 𝑌) = (𝑅 ×t 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098   cuni 4909   × cxp 5676  (class class class)co 7419  Topctop 22839   ×t ctx 23508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-topgen 17428  df-top 22840  df-topon 22857  df-bases 22893  df-tx 23510
This theorem is referenced by:  txindis  23582  cxpcn3  26728  tpr2rico  33644  raddcn  33661  sxbrsigalem3  34023  dya2iocucvr  34035  sxbrsigalem1  34036  txsconnlem  34981  cvmlift2lem7  35050  cvmlift2lem9  35052  cvmlift2lem10  35053  cvmlift2lem12  35055  cvmlift2lem13  35056  cvmliftphtlem  35058
  Copyright terms: Public domain W3C validator