Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > txunii | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
txunii.1 | ⊢ 𝑅 ∈ Top |
txunii.2 | ⊢ 𝑆 ∈ Top |
txunii.3 | ⊢ 𝑋 = ∪ 𝑅 |
txunii.4 | ⊢ 𝑌 = ∪ 𝑆 |
Ref | Expression |
---|---|
txunii | ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txunii.1 | . 2 ⊢ 𝑅 ∈ Top | |
2 | txunii.2 | . 2 ⊢ 𝑆 ∈ Top | |
3 | txunii.3 | . . 3 ⊢ 𝑋 = ∪ 𝑅 | |
4 | txunii.4 | . . 3 ⊢ 𝑌 = ∪ 𝑆 | |
5 | 3, 4 | txuni 22724 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
6 | 1, 2, 5 | mp2an 688 | 1 ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ∪ cuni 4844 × cxp 5586 (class class class)co 7268 Topctop 22023 ×t ctx 22692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-topgen 17135 df-top 22024 df-topon 22041 df-bases 22077 df-tx 22694 |
This theorem is referenced by: txindis 22766 cxpcn3 25882 tpr2rico 31841 raddcn 31858 sxbrsigalem3 32218 dya2iocucvr 32230 sxbrsigalem1 32231 txsconnlem 33181 cvmlift2lem7 33250 cvmlift2lem9 33252 cvmlift2lem10 33253 cvmlift2lem12 33255 cvmlift2lem13 33256 cvmliftphtlem 33258 |
Copyright terms: Public domain | W3C validator |