![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txunii | Structured version Visualization version GIF version |
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
txunii.1 | ⊢ 𝑅 ∈ Top |
txunii.2 | ⊢ 𝑆 ∈ Top |
txunii.3 | ⊢ 𝑋 = ∪ 𝑅 |
txunii.4 | ⊢ 𝑌 = ∪ 𝑆 |
Ref | Expression |
---|---|
txunii | ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txunii.1 | . 2 ⊢ 𝑅 ∈ Top | |
2 | txunii.2 | . 2 ⊢ 𝑆 ∈ Top | |
3 | txunii.3 | . . 3 ⊢ 𝑋 = ∪ 𝑅 | |
4 | txunii.4 | . . 3 ⊢ 𝑌 = ∪ 𝑆 | |
5 | 3, 4 | txuni 23621 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
6 | 1, 2, 5 | mp2an 691 | 1 ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 × cxp 5698 (class class class)co 7448 Topctop 22920 ×t ctx 23589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-tx 23591 |
This theorem is referenced by: txindis 23663 cxpcn3 26809 tpr2rico 33858 raddcn 33875 sxbrsigalem3 34237 dya2iocucvr 34249 sxbrsigalem1 34250 txsconnlem 35208 cvmlift2lem7 35277 cvmlift2lem9 35279 cvmlift2lem10 35280 cvmlift2lem12 35282 cvmlift2lem13 35283 cvmliftphtlem 35285 |
Copyright terms: Public domain | W3C validator |