| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txunii | Structured version Visualization version GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| txunii.1 | ⊢ 𝑅 ∈ Top |
| txunii.2 | ⊢ 𝑆 ∈ Top |
| txunii.3 | ⊢ 𝑋 = ∪ 𝑅 |
| txunii.4 | ⊢ 𝑌 = ∪ 𝑆 |
| Ref | Expression |
|---|---|
| txunii | ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txunii.1 | . 2 ⊢ 𝑅 ∈ Top | |
| 2 | txunii.2 | . 2 ⊢ 𝑆 ∈ Top | |
| 3 | txunii.3 | . . 3 ⊢ 𝑋 = ∪ 𝑅 | |
| 4 | txunii.4 | . . 3 ⊢ 𝑌 = ∪ 𝑆 | |
| 5 | 3, 4 | txuni 23530 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∪ cuni 4883 × cxp 5652 (class class class)co 7405 Topctop 22831 ×t ctx 23498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-topgen 17457 df-top 22832 df-topon 22849 df-bases 22884 df-tx 23500 |
| This theorem is referenced by: txindis 23572 cxpcn3 26710 tpr2rico 33943 raddcn 33960 sxbrsigalem3 34304 dya2iocucvr 34316 sxbrsigalem1 34317 txsconnlem 35262 cvmlift2lem7 35331 cvmlift2lem9 35333 cvmlift2lem10 35334 cvmlift2lem12 35336 cvmlift2lem13 35337 cvmliftphtlem 35339 |
| Copyright terms: Public domain | W3C validator |