| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txunii | Structured version Visualization version GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| txunii.1 | ⊢ 𝑅 ∈ Top |
| txunii.2 | ⊢ 𝑆 ∈ Top |
| txunii.3 | ⊢ 𝑋 = ∪ 𝑅 |
| txunii.4 | ⊢ 𝑌 = ∪ 𝑆 |
| Ref | Expression |
|---|---|
| txunii | ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txunii.1 | . 2 ⊢ 𝑅 ∈ Top | |
| 2 | txunii.2 | . 2 ⊢ 𝑆 ∈ Top | |
| 3 | txunii.3 | . . 3 ⊢ 𝑋 = ∪ 𝑅 | |
| 4 | txunii.4 | . . 3 ⊢ 𝑌 = ∪ 𝑆 | |
| 5 | 3, 4 | txuni 23513 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 × cxp 5629 (class class class)co 7369 Topctop 22814 ×t ctx 23481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-topgen 17383 df-top 22815 df-topon 22832 df-bases 22867 df-tx 23483 |
| This theorem is referenced by: txindis 23555 cxpcn3 26692 tpr2rico 33896 raddcn 33913 sxbrsigalem3 34257 dya2iocucvr 34269 sxbrsigalem1 34270 txsconnlem 35221 cvmlift2lem7 35290 cvmlift2lem9 35292 cvmlift2lem10 35293 cvmlift2lem12 35295 cvmlift2lem13 35296 cvmliftphtlem 35298 |
| Copyright terms: Public domain | W3C validator |