MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txunii Structured version   Visualization version   GIF version

Theorem txunii 23508
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
txunii.1 𝑅 ∈ Top
txunii.2 𝑆 ∈ Top
txunii.3 𝑋 = 𝑅
txunii.4 𝑌 = 𝑆
Assertion
Ref Expression
txunii (𝑋 × 𝑌) = (𝑅 ×t 𝑆)

Proof of Theorem txunii
StepHypRef Expression
1 txunii.1 . 2 𝑅 ∈ Top
2 txunii.2 . 2 𝑆 ∈ Top
3 txunii.3 . . 3 𝑋 = 𝑅
4 txunii.4 . . 3 𝑌 = 𝑆
53, 4txuni 23507 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
61, 2, 5mp2an 692 1 (𝑋 × 𝑌) = (𝑅 ×t 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111   cuni 4856   × cxp 5612  (class class class)co 7346  Topctop 22808   ×t ctx 23475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-tx 23477
This theorem is referenced by:  txindis  23549  cxpcn3  26685  tpr2rico  33925  raddcn  33942  sxbrsigalem3  34285  dya2iocucvr  34297  sxbrsigalem1  34298  txsconnlem  35284  cvmlift2lem7  35353  cvmlift2lem9  35355  cvmlift2lem10  35356  cvmlift2lem12  35358  cvmlift2lem13  35359  cvmliftphtlem  35361
  Copyright terms: Public domain W3C validator