MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1eop Structured version   Visualization version   GIF version

Theorem upgr1eop 27238
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1eop 27367. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Assertion
Ref Expression
upgr1eop (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)

Proof of Theorem upgr1eop
StepHypRef Expression
1 eqid 2739 . 2 (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩)
2 simplr 769 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐴𝑋)
3 simprl 771 . . 3 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
4 simpl 486 . . . 4 ((𝑉𝑊𝐴𝑋) → 𝑉𝑊)
5 snex 5341 . . . . 5 {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V
65a1i 11 . . . 4 ((𝐵𝑉𝐶𝑉) → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V)
7 opvtxfv 27127 . . . 4 ((𝑉𝑊 ∧ {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
84, 6, 7syl2an 599 . . 3 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = 𝑉)
93, 8eleqtrrd 2843 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐵 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
10 simprr 773 . . 3 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
1110, 8eleqtrrd 2843 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝐶 ∈ (Vtx‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩))
12 opiedgfv 27130 . . 3 ((𝑉𝑊 ∧ {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = {⟨𝐴, {𝐵, 𝐶}⟩})
134, 6, 12syl2an 599 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (iEdg‘⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩) = {⟨𝐴, {𝐵, 𝐶}⟩})
141, 2, 9, 11, 13upgr1e 27236 1 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3423  {csn 4558  {cpr 4560  cop 4564  cfv 6401  Vtxcvtx 27119  iEdgciedg 27120  UPGraphcupgr 27203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-1o 8226  df-oadd 8230  df-er 8415  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-dju 9547  df-card 9585  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-2 11923  df-n0 12121  df-xnn0 12193  df-z 12207  df-uz 12469  df-fz 13126  df-hash 13930  df-vtx 27121  df-iedg 27122  df-upgr 27205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator