MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xgepnf Structured version   Visualization version   GIF version

Theorem xgepnf 12200
Description: An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
xgepnf (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))

Proof of Theorem xgepnf
StepHypRef Expression
1 pnfxr 10293 . . 3 +∞ ∈ ℝ*
2 xrlenlt 10304 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ ≤ 𝐴 ↔ ¬ 𝐴 < +∞))
31, 2mpan 662 . 2 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ ¬ 𝐴 < +∞))
4 nltpnft 12199 . 2 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
53, 4bitr4d 271 1 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1631  wcel 2145   class class class wbr 4786  +∞cpnf 10272  *cxr 10274   < clt 10275  cle 10276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-pre-lttri 10211  ax-pre-lttrn 10212
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281
This theorem is referenced by:  xnn0lenn0nn0  12279  xdivpnfrp  29978  xrge0npcan  30031  esumpinfval  30472  esumpinfsum  30476  esumpcvgval  30477  voliune  30629  volfiniune  30630
  Copyright terms: Public domain W3C validator