| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpinfsum | Structured version Visualization version GIF version | ||
| Description: The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| esumpinfsum.p | ⊢ Ⅎ𝑘𝜑 |
| esumpinfsum.a | ⊢ Ⅎ𝑘𝐴 |
| esumpinfsum.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumpinfsum.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) |
| esumpinfsum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumpinfsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝐵) |
| esumpinfsum.5 | ⊢ (𝜑 → 𝑀 ∈ ℝ*) |
| esumpinfsum.6 | ⊢ (𝜑 → 0 < 𝑀) |
| Ref | Expression |
|---|---|
| esumpinfsum | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13333 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 2 | esumpinfsum.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | esumpinfsum.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 4 | esumpinfsum.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
| 6 | 3, 5 | ralrimi 3227 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
| 7 | esumpinfsum.a | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 8 | 7 | esumcl 34003 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 9 | 2, 6, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 10 | 1, 9 | sselid 3933 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
| 11 | esumpinfsum.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ*) | |
| 12 | esumpinfsum.6 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑀) | |
| 13 | 0xr 11162 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 14 | xrltle 13051 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ 𝑀 ∈ ℝ*) → (0 < 𝑀 → 0 ≤ 𝑀)) | |
| 15 | 13, 11, 14 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → (0 < 𝑀 → 0 ≤ 𝑀)) |
| 16 | 12, 15 | mpd 15 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 17 | pnfge 13032 | . . . . . . 7 ⊢ (𝑀 ∈ ℝ* → 𝑀 ≤ +∞) | |
| 18 | 11, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ +∞) |
| 19 | pnfxr 11169 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 20 | elicc1 13292 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞))) | |
| 21 | 13, 19, 20 | mp2an 692 | . . . . . 6 ⊢ (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞)) |
| 22 | 11, 16, 18, 21 | syl3anbrc 1344 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (0[,]+∞)) |
| 23 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝑀 | |
| 24 | 7, 23 | esumcst 34036 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑀 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝑀 = ((♯‘𝐴) ·e 𝑀)) |
| 25 | 2, 22, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 = ((♯‘𝐴) ·e 𝑀)) |
| 26 | esumpinfsum.2 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) | |
| 27 | hashinf 14242 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
| 28 | 2, 26, 27 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) = +∞) |
| 29 | 28 | oveq1d 7364 | . . . 4 ⊢ (𝜑 → ((♯‘𝐴) ·e 𝑀) = (+∞ ·e 𝑀)) |
| 30 | xmulpnf2 13177 | . . . . 5 ⊢ ((𝑀 ∈ ℝ* ∧ 0 < 𝑀) → (+∞ ·e 𝑀) = +∞) | |
| 31 | 11, 12, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (+∞ ·e 𝑀) = +∞) |
| 32 | 25, 29, 31 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 = +∞) |
| 33 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ (0[,]+∞)) |
| 34 | esumpinfsum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝐵) | |
| 35 | 3, 7, 2, 33, 4, 34 | esumlef 34035 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 ≤ Σ*𝑘 ∈ 𝐴𝐵) |
| 36 | 32, 35 | eqbrtrrd 5116 | . 2 ⊢ (𝜑 → +∞ ≤ Σ*𝑘 ∈ 𝐴𝐵) |
| 37 | xgepnf 13067 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 ↔ Σ*𝑘 ∈ 𝐴𝐵 = +∞)) | |
| 38 | 37 | biimpd 229 | . 2 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 → Σ*𝑘 ∈ 𝐴𝐵 = +∞)) |
| 39 | 10, 36, 38 | sylc 65 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 0cc0 11009 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ·e cxmu 13013 [,]cicc 13251 ♯chash 14237 Σ*cesum 34000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-ordt 17405 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-plusf 18513 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-abv 20694 df-lmod 20765 df-scaf 20766 df-sra 21077 df-rgmod 21078 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tmd 23957 df-tgp 23958 df-tsms 24012 df-trg 24045 df-xms 24206 df-ms 24207 df-tms 24208 df-nm 24468 df-ngp 24469 df-nrg 24471 df-nlm 24472 df-ii 24768 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 df-esum 34001 |
| This theorem is referenced by: hasheuni 34058 |
| Copyright terms: Public domain | W3C validator |