Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpinfsum | Structured version Visualization version GIF version |
Description: The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
esumpinfsum.p | ⊢ Ⅎ𝑘𝜑 |
esumpinfsum.a | ⊢ Ⅎ𝑘𝐴 |
esumpinfsum.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpinfsum.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) |
esumpinfsum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumpinfsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝐵) |
esumpinfsum.5 | ⊢ (𝜑 → 𝑀 ∈ ℝ*) |
esumpinfsum.6 | ⊢ (𝜑 → 0 < 𝑀) |
Ref | Expression |
---|---|
esumpinfsum | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13018 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | esumpinfsum.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumpinfsum.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
4 | esumpinfsum.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | 4 | ex 416 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
6 | 3, 5 | ralrimi 3137 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
7 | esumpinfsum.a | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
8 | 7 | esumcl 31710 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | 2, 6, 8 | syl2anc 587 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
10 | 1, 9 | sseldi 3899 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
11 | esumpinfsum.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ*) | |
12 | esumpinfsum.6 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑀) | |
13 | 0xr 10880 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
14 | xrltle 12739 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ 𝑀 ∈ ℝ*) → (0 < 𝑀 → 0 ≤ 𝑀)) | |
15 | 13, 11, 14 | sylancr 590 | . . . . . . 7 ⊢ (𝜑 → (0 < 𝑀 → 0 ≤ 𝑀)) |
16 | 12, 15 | mpd 15 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝑀) |
17 | pnfge 12722 | . . . . . . 7 ⊢ (𝑀 ∈ ℝ* → 𝑀 ≤ +∞) | |
18 | 11, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ +∞) |
19 | pnfxr 10887 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
20 | elicc1 12979 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞))) | |
21 | 13, 19, 20 | mp2an 692 | . . . . . 6 ⊢ (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞)) |
22 | 11, 16, 18, 21 | syl3anbrc 1345 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (0[,]+∞)) |
23 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘𝑀 | |
24 | 7, 23 | esumcst 31743 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑀 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝑀 = ((♯‘𝐴) ·e 𝑀)) |
25 | 2, 22, 24 | syl2anc 587 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 = ((♯‘𝐴) ·e 𝑀)) |
26 | esumpinfsum.2 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) | |
27 | hashinf 13901 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
28 | 2, 26, 27 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) = +∞) |
29 | 28 | oveq1d 7228 | . . . 4 ⊢ (𝜑 → ((♯‘𝐴) ·e 𝑀) = (+∞ ·e 𝑀)) |
30 | xmulpnf2 12865 | . . . . 5 ⊢ ((𝑀 ∈ ℝ* ∧ 0 < 𝑀) → (+∞ ·e 𝑀) = +∞) | |
31 | 11, 12, 30 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (+∞ ·e 𝑀) = +∞) |
32 | 25, 29, 31 | 3eqtrd 2781 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 = +∞) |
33 | 22 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ (0[,]+∞)) |
34 | esumpinfsum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝐵) | |
35 | 3, 7, 2, 33, 4, 34 | esumlef 31742 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 ≤ Σ*𝑘 ∈ 𝐴𝐵) |
36 | 32, 35 | eqbrtrrd 5077 | . 2 ⊢ (𝜑 → +∞ ≤ Σ*𝑘 ∈ 𝐴𝐵) |
37 | xgepnf 12755 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 ↔ Σ*𝑘 ∈ 𝐴𝐵 = +∞)) | |
38 | 37 | biimpd 232 | . 2 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 → Σ*𝑘 ∈ 𝐴𝐵 = +∞)) |
39 | 10, 36, 38 | sylc 65 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2110 Ⅎwnfc 2884 ∀wral 3061 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Fincfn 8626 0cc0 10729 +∞cpnf 10864 ℝ*cxr 10866 < clt 10867 ≤ cle 10868 ·e cxmu 12703 [,]cicc 12938 ♯chash 13896 Σ*cesum 31707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-fac 13840 df-bc 13869 df-hash 13897 df-shft 14630 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-limsup 15032 df-clim 15049 df-rlim 15050 df-sum 15250 df-ef 15629 df-sin 15631 df-cos 15632 df-pi 15634 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-ordt 17006 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-ps 18072 df-tsr 18073 df-plusf 18113 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-subrg 19798 df-abv 19853 df-lmod 19901 df-scaf 19902 df-sra 20209 df-rgmod 20210 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-lp 22033 df-perf 22034 df-cn 22124 df-cnp 22125 df-haus 22212 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-tmd 22969 df-tgp 22970 df-tsms 23024 df-trg 23057 df-xms 23218 df-ms 23219 df-tms 23220 df-nm 23480 df-ngp 23481 df-nrg 23483 df-nlm 23484 df-ii 23774 df-cncf 23775 df-limc 24763 df-dv 24764 df-log 25445 df-esum 31708 |
This theorem is referenced by: hasheuni 31765 |
Copyright terms: Public domain | W3C validator |