MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringinvnzdiv Structured version   Visualization version   GIF version

Theorem ringinvnzdiv 18947
Description: In a unitary ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
ringinvnzdiv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringinvnzdiv (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnzdiv
StepHypRef Expression
1 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2 ringinvnzdiv.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.y . . . . . . . . 9 (𝜑𝑌𝐵)
4 ringinvnzdiv.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 ringinvnzdiv.t . . . . . . . . . 10 · = (.r𝑅)
6 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
74, 5, 6ringlidm 18925 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 · 𝑌) = 𝑌)
82, 3, 7syl2anc 581 . . . . . . . 8 (𝜑 → ( 1 · 𝑌) = 𝑌)
98eqcomd 2831 . . . . . . 7 (𝜑𝑌 = ( 1 · 𝑌))
109ad3antrrr 723 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌))
11 oveq1 6912 . . . . . . . . . 10 ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1211eqcoms 2833 . . . . . . . . 9 ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1312adantl 475 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
142adantr 474 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → 𝑅 ∈ Ring)
15 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎𝐵)
16 ringinvnzdiv.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
1716adantr 474 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑋𝐵)
183adantr 474 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑌𝐵)
1915, 17, 183jca 1164 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (𝑎𝐵𝑋𝐵𝑌𝐵))
2014, 19jca 509 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
2120adantr 474 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
224, 5ringass 18918 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2321, 22syl 17 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2413, 23eqtrd 2861 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2524adantr 474 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
26 oveq2 6913 . . . . . . 7 ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 ))
27 ringinvnzdiv.z . . . . . . . . . 10 0 = (0g𝑅)
284, 5, 27ringrz 18942 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
292, 28sylan 577 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
3029adantr 474 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 )
3126, 30sylan9eqr 2883 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 )
3210, 25, 313eqtrd 2865 . . . . 5 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 )
3332exp31 412 . . . 4 ((𝜑𝑎𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
3433rexlimdva 3240 . . 3 (𝜑 → (∃𝑎𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
351, 34mpd 15 . 2 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
36 oveq2 6913 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
374, 5, 27ringrz 18942 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
382, 16, 37syl2anc 581 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
3936, 38sylan9eqr 2883 . . 3 ((𝜑𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )
4039ex 403 . 2 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
4135, 40impbid 204 1 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wrex 3118  cfv 6123  (class class class)co 6905  Basecbs 16222  .rcmulr 16306  0gc0g 16453  1rcur 18855  Ringcrg 18901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-mgp 18844  df-ur 18856  df-ring 18903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator