![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringinvnzdiv | Structured version Visualization version GIF version |
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringinvnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
ringinvnzdiv.t | ⊢ · = (.r‘𝑅) |
ringinvnzdiv.u | ⊢ 1 = (1r‘𝑅) |
ringinvnzdiv.z | ⊢ 0 = (0g‘𝑅) |
ringinvnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringinvnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringinvnzdiv.a | ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
ringinvnzdiv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ringinvnzdiv | ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinvnzdiv.a | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) | |
2 | ringinvnzdiv.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | ringinvnzdiv.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ringinvnzdiv.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
5 | ringinvnzdiv.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
6 | ringinvnzdiv.u | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑅) | |
7 | 4, 5, 6 | ringlidm 20292 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 · 𝑌) = 𝑌) |
8 | 2, 3, 7 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 𝑌) = 𝑌) |
9 | 8 | eqcomd 2746 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ( 1 · 𝑌)) |
10 | 9 | ad3antrrr 729 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌)) |
11 | oveq1 7455 | . . . . . . . . . 10 ⊢ ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) | |
12 | 11 | eqcoms 2748 | . . . . . . . . 9 ⊢ ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
13 | 12 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
14 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
15 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
16 | ringinvnzdiv.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
17 | 16 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
18 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
19 | 15, 17, 18 | 3jca 1128 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
20 | 14, 19 | jca 511 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
22 | 4, 5 | ringass 20280 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
24 | 13, 23 | eqtrd 2780 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
25 | 24 | adantr 480 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
26 | oveq2 7456 | . . . . . . 7 ⊢ ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 )) | |
27 | ringinvnzdiv.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
28 | 4, 5, 27 | ringrz 20317 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
29 | 2, 28 | sylan 579 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 ) |
31 | 26, 30 | sylan9eqr 2802 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 ) |
32 | 10, 25, 31 | 3eqtrd 2784 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 ) |
33 | 32 | exp31 419 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
34 | 33 | rexlimdva 3161 | . . 3 ⊢ (𝜑 → (∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
35 | 1, 34 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
36 | oveq2 7456 | . . . 4 ⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) | |
37 | 4, 5, 27 | ringrz 20317 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
38 | 2, 16, 37 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
39 | 36, 38 | sylan9eqr 2802 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ) |
40 | 39 | ex 412 | . 2 ⊢ (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
41 | 35, 40 | impbid 212 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 1rcur 20208 Ringcrg 20260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 |
This theorem is referenced by: ringunitnzdiv 20424 |
Copyright terms: Public domain | W3C validator |