MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringinvnzdiv Structured version   Visualization version   GIF version

Theorem ringinvnzdiv 20324
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
ringinvnzdiv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringinvnzdiv (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnzdiv
StepHypRef Expression
1 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2 ringinvnzdiv.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.y . . . . . . . . 9 (𝜑𝑌𝐵)
4 ringinvnzdiv.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 ringinvnzdiv.t . . . . . . . . . 10 · = (.r𝑅)
6 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
74, 5, 6ringlidm 20292 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 · 𝑌) = 𝑌)
82, 3, 7syl2anc 583 . . . . . . . 8 (𝜑 → ( 1 · 𝑌) = 𝑌)
98eqcomd 2746 . . . . . . 7 (𝜑𝑌 = ( 1 · 𝑌))
109ad3antrrr 729 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌))
11 oveq1 7455 . . . . . . . . . 10 ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1211eqcoms 2748 . . . . . . . . 9 ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1312adantl 481 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
142adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → 𝑅 ∈ Ring)
15 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎𝐵)
16 ringinvnzdiv.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
1716adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑋𝐵)
183adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑌𝐵)
1915, 17, 183jca 1128 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (𝑎𝐵𝑋𝐵𝑌𝐵))
2014, 19jca 511 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
2120adantr 480 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
224, 5ringass 20280 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2321, 22syl 17 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2413, 23eqtrd 2780 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2524adantr 480 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
26 oveq2 7456 . . . . . . 7 ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 ))
27 ringinvnzdiv.z . . . . . . . . . 10 0 = (0g𝑅)
284, 5, 27ringrz 20317 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
292, 28sylan 579 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
3029adantr 480 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 )
3126, 30sylan9eqr 2802 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 )
3210, 25, 313eqtrd 2784 . . . . 5 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 )
3332exp31 419 . . . 4 ((𝜑𝑎𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
3433rexlimdva 3161 . . 3 (𝜑 → (∃𝑎𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
351, 34mpd 15 . 2 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
36 oveq2 7456 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
374, 5, 27ringrz 20317 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
382, 16, 37syl2anc 583 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
3936, 38sylan9eqr 2802 . . 3 ((𝜑𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )
4039ex 412 . 2 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
4135, 40impbid 212 1 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262
This theorem is referenced by:  ringunitnzdiv  20424
  Copyright terms: Public domain W3C validator