| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringinvnzdiv | Structured version Visualization version GIF version | ||
| Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
| Ref | Expression |
|---|---|
| ringinvnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringinvnzdiv.t | ⊢ · = (.r‘𝑅) |
| ringinvnzdiv.u | ⊢ 1 = (1r‘𝑅) |
| ringinvnzdiv.z | ⊢ 0 = (0g‘𝑅) |
| ringinvnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringinvnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringinvnzdiv.a | ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
| ringinvnzdiv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringinvnzdiv | ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvnzdiv.a | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) | |
| 2 | ringinvnzdiv.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 3 | ringinvnzdiv.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringinvnzdiv.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | ringinvnzdiv.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
| 6 | ringinvnzdiv.u | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑅) | |
| 7 | 4, 5, 6 | ringlidm 20185 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 · 𝑌) = 𝑌) |
| 8 | 2, 3, 7 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 𝑌) = 𝑌) |
| 9 | 8 | eqcomd 2736 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ( 1 · 𝑌)) |
| 10 | 9 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌)) |
| 11 | oveq1 7397 | . . . . . . . . . 10 ⊢ ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) | |
| 12 | 11 | eqcoms 2738 | . . . . . . . . 9 ⊢ ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
| 13 | 12 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
| 14 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 15 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
| 16 | ringinvnzdiv.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 17 | 16 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 18 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 19 | 15, 17, 18 | 3jca 1128 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 20 | 14, 19 | jca 511 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
| 21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
| 22 | 4, 5 | ringass 20169 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 24 | 13, 23 | eqtrd 2765 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 26 | oveq2 7398 | . . . . . . 7 ⊢ ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 )) | |
| 27 | ringinvnzdiv.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
| 28 | 4, 5, 27 | ringrz 20210 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 29 | 2, 28 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 ) |
| 31 | 26, 30 | sylan9eqr 2787 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 ) |
| 32 | 10, 25, 31 | 3eqtrd 2769 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 ) |
| 33 | 32 | exp31 419 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 34 | 33 | rexlimdva 3135 | . . 3 ⊢ (𝜑 → (∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 35 | 1, 34 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
| 36 | oveq2 7398 | . . . 4 ⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) | |
| 37 | 4, 5, 27 | ringrz 20210 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 38 | 2, 16, 37 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
| 39 | 36, 38 | sylan9eqr 2787 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ) |
| 40 | 39 | ex 412 | . 2 ⊢ (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
| 41 | 35, 40 | impbid 212 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 0gc0g 17409 1rcur 20097 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 |
| This theorem is referenced by: ringunitnzdiv 20314 |
| Copyright terms: Public domain | W3C validator |