MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringinvnzdiv Structured version   Visualization version   GIF version

Theorem ringinvnzdiv 19339
Description: In a unitary ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
ringinvnzdiv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringinvnzdiv (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnzdiv
StepHypRef Expression
1 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2 ringinvnzdiv.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.y . . . . . . . . 9 (𝜑𝑌𝐵)
4 ringinvnzdiv.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 ringinvnzdiv.t . . . . . . . . . 10 · = (.r𝑅)
6 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
74, 5, 6ringlidm 19317 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 · 𝑌) = 𝑌)
82, 3, 7syl2anc 587 . . . . . . . 8 (𝜑 → ( 1 · 𝑌) = 𝑌)
98eqcomd 2804 . . . . . . 7 (𝜑𝑌 = ( 1 · 𝑌))
109ad3antrrr 729 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌))
11 oveq1 7142 . . . . . . . . . 10 ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1211eqcoms 2806 . . . . . . . . 9 ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1312adantl 485 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
142adantr 484 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → 𝑅 ∈ Ring)
15 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎𝐵)
16 ringinvnzdiv.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
1716adantr 484 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑋𝐵)
183adantr 484 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑌𝐵)
1915, 17, 183jca 1125 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (𝑎𝐵𝑋𝐵𝑌𝐵))
2014, 19jca 515 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
2120adantr 484 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
224, 5ringass 19310 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2321, 22syl 17 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2413, 23eqtrd 2833 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2524adantr 484 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
26 oveq2 7143 . . . . . . 7 ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 ))
27 ringinvnzdiv.z . . . . . . . . . 10 0 = (0g𝑅)
284, 5, 27ringrz 19334 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
292, 28sylan 583 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
3029adantr 484 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 )
3126, 30sylan9eqr 2855 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 )
3210, 25, 313eqtrd 2837 . . . . 5 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 )
3332exp31 423 . . . 4 ((𝜑𝑎𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
3433rexlimdva 3243 . . 3 (𝜑 → (∃𝑎𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
351, 34mpd 15 . 2 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
36 oveq2 7143 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
374, 5, 27ringrz 19334 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
382, 16, 37syl2anc 587 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
3936, 38sylan9eqr 2855 . . 3 ((𝜑𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )
4039ex 416 . 2 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
4135, 40impbid 215 1 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  cfv 6324  (class class class)co 7135  Basecbs 16475  .rcmulr 16558  0gc0g 16705  1rcur 19244  Ringcrg 19290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19233  df-ur 19245  df-ring 19292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator