| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringinvnzdiv | Structured version Visualization version GIF version | ||
| Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
| Ref | Expression |
|---|---|
| ringinvnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringinvnzdiv.t | ⊢ · = (.r‘𝑅) |
| ringinvnzdiv.u | ⊢ 1 = (1r‘𝑅) |
| ringinvnzdiv.z | ⊢ 0 = (0g‘𝑅) |
| ringinvnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringinvnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringinvnzdiv.a | ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
| ringinvnzdiv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringinvnzdiv | ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvnzdiv.a | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) | |
| 2 | ringinvnzdiv.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 3 | ringinvnzdiv.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringinvnzdiv.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | ringinvnzdiv.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
| 6 | ringinvnzdiv.u | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑅) | |
| 7 | 4, 5, 6 | ringlidm 20266 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 · 𝑌) = 𝑌) |
| 8 | 2, 3, 7 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 𝑌) = 𝑌) |
| 9 | 8 | eqcomd 2743 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ( 1 · 𝑌)) |
| 10 | 9 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌)) |
| 11 | oveq1 7438 | . . . . . . . . . 10 ⊢ ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) | |
| 12 | 11 | eqcoms 2745 | . . . . . . . . 9 ⊢ ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
| 13 | 12 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
| 14 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 15 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
| 16 | ringinvnzdiv.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 17 | 16 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 18 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 19 | 15, 17, 18 | 3jca 1129 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 20 | 14, 19 | jca 511 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
| 21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
| 22 | 4, 5 | ringass 20250 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 24 | 13, 23 | eqtrd 2777 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 26 | oveq2 7439 | . . . . . . 7 ⊢ ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 )) | |
| 27 | ringinvnzdiv.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
| 28 | 4, 5, 27 | ringrz 20291 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 29 | 2, 28 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 ) |
| 31 | 26, 30 | sylan9eqr 2799 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 ) |
| 32 | 10, 25, 31 | 3eqtrd 2781 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 ) |
| 33 | 32 | exp31 419 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 34 | 33 | rexlimdva 3155 | . . 3 ⊢ (𝜑 → (∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 35 | 1, 34 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
| 36 | oveq2 7439 | . . . 4 ⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) | |
| 37 | 4, 5, 27 | ringrz 20291 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 38 | 2, 16, 37 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
| 39 | 36, 38 | sylan9eqr 2799 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ) |
| 40 | 39 | ex 412 | . 2 ⊢ (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
| 41 | 35, 40 | impbid 212 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 0gc0g 17484 1rcur 20178 Ringcrg 20230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 |
| This theorem is referenced by: ringunitnzdiv 20398 |
| Copyright terms: Public domain | W3C validator |