ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3 Unicode version

Theorem 2lgslem3 15249
Description: Lemma 3 for 2lgs 15252. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 9339 . . 3  |-  ( P  e.  NN  ->  P  e.  ZZ )
2 lgsdir2lem3 15178 . . 3  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
31, 2sylan 283 . 2  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
4 elun 3301 . . 3  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  ( P  mod  8 )  e. 
{ 3 ,  5 } ) )
5 elpri 3642 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 ) )
6 2lgslem2.n . . . . . . . . . . . . 13  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
762lgslem3a1 15245 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( N  mod  2 )  =  0 )
87a1d 22 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
98expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  1  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
109impd 254 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  1  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1162lgslem3d1 15248 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( N  mod  2 )  =  0 )
1211a1d 22 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
1312expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  7  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
1413impd 254 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  7  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1510, 14jaoi 717 . . . . . . . 8  |-  ( ( ( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  0 ) )
165, 15syl 14 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1716imp 124 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  0 )
18 iftrue 3563 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
1918adantr 276 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
2017, 19eqtr4d 2229 . . . . 5  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
2120ex 115 . . . 4  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
22 elpri 3642 . . . . 5  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  ->  (
( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 ) )
2362lgslem3b1 15246 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  3 )  ->  ( N  mod  2 )  =  1 )
2423expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  3  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2562lgslem3c1 15247 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  5 )  ->  ( N  mod  2 )  =  1 )
2625expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  5  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2724, 26jaoi 717 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  1 )
29 1re 8020 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
30 1lt3 9156 . . . . . . . . . . . . . . . . 17  |-  1  <  3
3129, 30ltneii 8118 . . . . . . . . . . . . . . . 16  |-  1  =/=  3
3231nesymi 2410 . . . . . . . . . . . . . . 15  |-  -.  3  =  1
33 3re 9058 . . . . . . . . . . . . . . . . 17  |-  3  e.  RR
34 3lt7 9172 . . . . . . . . . . . . . . . . 17  |-  3  <  7
3533, 34ltneii 8118 . . . . . . . . . . . . . . . 16  |-  3  =/=  7
3635neii 2366 . . . . . . . . . . . . . . 15  |-  -.  3  =  7
3732, 36pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( -.  3  =  1  /\ 
-.  3  =  7 )
38 eqeq1 2200 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  1  <->  3  =  1 ) )
3938notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  3  =  1 ) )
40 eqeq1 2200 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  7  <->  3  =  7 ) )
4140notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  3  =  7 ) )
4239, 41anbi12d 473 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  3  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  3  =  1  /\  -.  3  =  7
) ) )
4337, 42mpbiri 168 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
44 1lt5 9163 . . . . . . . . . . . . . . . . 17  |-  1  <  5
4529, 44ltneii 8118 . . . . . . . . . . . . . . . 16  |-  1  =/=  5
4645nesymi 2410 . . . . . . . . . . . . . . 15  |-  -.  5  =  1
47 5re 9063 . . . . . . . . . . . . . . . . 17  |-  5  e.  RR
48 5lt7 9170 . . . . . . . . . . . . . . . . 17  |-  5  <  7
4947, 48ltneii 8118 . . . . . . . . . . . . . . . 16  |-  5  =/=  7
5049neii 2366 . . . . . . . . . . . . . . 15  |-  -.  5  =  7
5146, 50pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( -.  5  =  1  /\ 
-.  5  =  7 )
52 eqeq1 2200 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  1  <->  5  =  1 ) )
5352notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  5  =  1 ) )
54 eqeq1 2200 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  7  <->  5  =  7 ) )
5554notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  5  =  7 ) )
5653, 55anbi12d 473 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  5  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  5  =  1  /\  -.  5  =  7
) ) )
5751, 56mpbiri 168 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
5843, 57jaoi 717 . . . . . . . . . . . 12  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
5958adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
60 ioran 753 . . . . . . . . . . 11  |-  ( -.  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 )  <->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
6159, 60sylibr 134 . . . . . . . . . 10  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  -.  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
6261, 5nsyl 629 . . . . . . . . 9  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  -.  ( P  mod  8
)  e.  { 1 ,  7 } )
6362iffalsed 3568 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
6428, 63eqtr4d 2229 . . . . . . 7  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
6564a1d 22 . . . . . 6  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  2  ||  P  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6665expimpd 363 . . . . 5  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6722, 66syl 14 . . . 4  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
6821, 67jaoi 717 . . 3  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  ( P  mod  8
)  e.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
694, 68sylbi 121 . 2  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
703, 69mpcom 36 1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3152   ifcif 3558   {cpr 3620   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   0cc0 7874   1c1 7875    - cmin 8192    / cdiv 8693   NNcn 8984   2c2 9035   3c3 9036   4c4 9037   5c5 9038   7c7 9040   8c8 9041   ZZcz 9320   |_cfl 10340    mod cmo 10396    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fl 10342  df-mod 10397  df-dvds 11934
This theorem is referenced by:  2lgs  15252
  Copyright terms: Public domain W3C validator