ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3 Unicode version

Theorem 2lgslem3 15622
Description: Lemma 3 for 2lgs 15625. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 9398 . . 3  |-  ( P  e.  NN  ->  P  e.  ZZ )
2 lgsdir2lem3 15551 . . 3  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
31, 2sylan 283 . 2  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
4 elun 3315 . . 3  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  ( P  mod  8 )  e. 
{ 3 ,  5 } ) )
5 elpri 3657 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 ) )
6 2lgslem2.n . . . . . . . . . . . . 13  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
762lgslem3a1 15618 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( N  mod  2 )  =  0 )
87a1d 22 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
98expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  1  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
109impd 254 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  1  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1162lgslem3d1 15621 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( N  mod  2 )  =  0 )
1211a1d 22 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
1312expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  7  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
1413impd 254 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  7  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1510, 14jaoi 718 . . . . . . . 8  |-  ( ( ( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  0 ) )
165, 15syl 14 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1716imp 124 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  0 )
18 iftrue 3577 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
1918adantr 276 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
2017, 19eqtr4d 2242 . . . . 5  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
2120ex 115 . . . 4  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
22 elpri 3657 . . . . 5  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  ->  (
( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 ) )
2362lgslem3b1 15619 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  3 )  ->  ( N  mod  2 )  =  1 )
2423expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  3  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2562lgslem3c1 15620 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  5 )  ->  ( N  mod  2 )  =  1 )
2625expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  5  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2724, 26jaoi 718 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  1 )
29 1re 8078 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
30 1lt3 9215 . . . . . . . . . . . . . . . . 17  |-  1  <  3
3129, 30ltneii 8176 . . . . . . . . . . . . . . . 16  |-  1  =/=  3
3231nesymi 2423 . . . . . . . . . . . . . . 15  |-  -.  3  =  1
33 3re 9117 . . . . . . . . . . . . . . . . 17  |-  3  e.  RR
34 3lt7 9231 . . . . . . . . . . . . . . . . 17  |-  3  <  7
3533, 34ltneii 8176 . . . . . . . . . . . . . . . 16  |-  3  =/=  7
3635neii 2379 . . . . . . . . . . . . . . 15  |-  -.  3  =  7
3732, 36pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( -.  3  =  1  /\ 
-.  3  =  7 )
38 eqeq1 2213 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  1  <->  3  =  1 ) )
3938notbid 669 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  3  =  1 ) )
40 eqeq1 2213 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  7  <->  3  =  7 ) )
4140notbid 669 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  3  =  7 ) )
4239, 41anbi12d 473 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  3  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  3  =  1  /\  -.  3  =  7
) ) )
4337, 42mpbiri 168 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
44 1lt5 9222 . . . . . . . . . . . . . . . . 17  |-  1  <  5
4529, 44ltneii 8176 . . . . . . . . . . . . . . . 16  |-  1  =/=  5
4645nesymi 2423 . . . . . . . . . . . . . . 15  |-  -.  5  =  1
47 5re 9122 . . . . . . . . . . . . . . . . 17  |-  5  e.  RR
48 5lt7 9229 . . . . . . . . . . . . . . . . 17  |-  5  <  7
4947, 48ltneii 8176 . . . . . . . . . . . . . . . 16  |-  5  =/=  7
5049neii 2379 . . . . . . . . . . . . . . 15  |-  -.  5  =  7
5146, 50pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( -.  5  =  1  /\ 
-.  5  =  7 )
52 eqeq1 2213 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  1  <->  5  =  1 ) )
5352notbid 669 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  5  =  1 ) )
54 eqeq1 2213 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  7  <->  5  =  7 ) )
5554notbid 669 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  5  =  7 ) )
5653, 55anbi12d 473 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  5  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  5  =  1  /\  -.  5  =  7
) ) )
5751, 56mpbiri 168 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
5843, 57jaoi 718 . . . . . . . . . . . 12  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
5958adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
60 ioran 754 . . . . . . . . . . 11  |-  ( -.  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 )  <->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
6159, 60sylibr 134 . . . . . . . . . 10  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  -.  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
6261, 5nsyl 629 . . . . . . . . 9  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  -.  ( P  mod  8
)  e.  { 1 ,  7 } )
6362iffalsed 3582 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
6428, 63eqtr4d 2242 . . . . . . 7  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
6564a1d 22 . . . . . 6  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  2  ||  P  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6665expimpd 363 . . . . 5  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6722, 66syl 14 . . . 4  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
6821, 67jaoi 718 . . 3  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  ( P  mod  8
)  e.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
694, 68sylbi 121 . 2  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
703, 69mpcom 36 1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2177    u. cun 3165   ifcif 3572   {cpr 3635   class class class wbr 4047   ` cfv 5276  (class class class)co 5951   0cc0 7932   1c1 7933    - cmin 8250    / cdiv 8752   NNcn 9043   2c2 9094   3c3 9095   4c4 9096   5c5 9097   7c7 9099   8c8 9100   ZZcz 9379   |_cfl 10418    mod cmo 10474    || cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-ico 10023  df-fz 10138  df-fl 10420  df-mod 10475  df-dvds 12143
This theorem is referenced by:  2lgs  15625
  Copyright terms: Public domain W3C validator