ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3 Unicode version

Theorem 2lgslem3 15450
Description: Lemma 3 for 2lgs 15453. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 9364 . . 3  |-  ( P  e.  NN  ->  P  e.  ZZ )
2 lgsdir2lem3 15379 . . 3  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
31, 2sylan 283 . 2  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
4 elun 3305 . . 3  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  ( P  mod  8 )  e. 
{ 3 ,  5 } ) )
5 elpri 3646 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 ) )
6 2lgslem2.n . . . . . . . . . . . . 13  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
762lgslem3a1 15446 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( N  mod  2 )  =  0 )
87a1d 22 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
98expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  1  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
109impd 254 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  1  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1162lgslem3d1 15449 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( N  mod  2 )  =  0 )
1211a1d 22 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
1312expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  7  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
1413impd 254 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  7  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1510, 14jaoi 717 . . . . . . . 8  |-  ( ( ( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  0 ) )
165, 15syl 14 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1716imp 124 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  0 )
18 iftrue 3567 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
1918adantr 276 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
2017, 19eqtr4d 2232 . . . . 5  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
2120ex 115 . . . 4  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
22 elpri 3646 . . . . 5  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  ->  (
( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 ) )
2362lgslem3b1 15447 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  3 )  ->  ( N  mod  2 )  =  1 )
2423expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  3  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2562lgslem3c1 15448 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  5 )  ->  ( N  mod  2 )  =  1 )
2625expcom 116 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  5  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2724, 26jaoi 717 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  1 )
29 1re 8044 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
30 1lt3 9181 . . . . . . . . . . . . . . . . 17  |-  1  <  3
3129, 30ltneii 8142 . . . . . . . . . . . . . . . 16  |-  1  =/=  3
3231nesymi 2413 . . . . . . . . . . . . . . 15  |-  -.  3  =  1
33 3re 9083 . . . . . . . . . . . . . . . . 17  |-  3  e.  RR
34 3lt7 9197 . . . . . . . . . . . . . . . . 17  |-  3  <  7
3533, 34ltneii 8142 . . . . . . . . . . . . . . . 16  |-  3  =/=  7
3635neii 2369 . . . . . . . . . . . . . . 15  |-  -.  3  =  7
3732, 36pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( -.  3  =  1  /\ 
-.  3  =  7 )
38 eqeq1 2203 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  1  <->  3  =  1 ) )
3938notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  3  =  1 ) )
40 eqeq1 2203 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  7  <->  3  =  7 ) )
4140notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  3  =  7 ) )
4239, 41anbi12d 473 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  3  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  3  =  1  /\  -.  3  =  7
) ) )
4337, 42mpbiri 168 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
44 1lt5 9188 . . . . . . . . . . . . . . . . 17  |-  1  <  5
4529, 44ltneii 8142 . . . . . . . . . . . . . . . 16  |-  1  =/=  5
4645nesymi 2413 . . . . . . . . . . . . . . 15  |-  -.  5  =  1
47 5re 9088 . . . . . . . . . . . . . . . . 17  |-  5  e.  RR
48 5lt7 9195 . . . . . . . . . . . . . . . . 17  |-  5  <  7
4947, 48ltneii 8142 . . . . . . . . . . . . . . . 16  |-  5  =/=  7
5049neii 2369 . . . . . . . . . . . . . . 15  |-  -.  5  =  7
5146, 50pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( -.  5  =  1  /\ 
-.  5  =  7 )
52 eqeq1 2203 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  1  <->  5  =  1 ) )
5352notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  5  =  1 ) )
54 eqeq1 2203 . . . . . . . . . . . . . . . 16  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  7  <->  5  =  7 ) )
5554notbid 668 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  5  =  7 ) )
5653, 55anbi12d 473 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  5  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  5  =  1  /\  -.  5  =  7
) ) )
5751, 56mpbiri 168 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
5843, 57jaoi 717 . . . . . . . . . . . 12  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
5958adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
60 ioran 753 . . . . . . . . . . 11  |-  ( -.  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 )  <->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
6159, 60sylibr 134 . . . . . . . . . 10  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  -.  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
6261, 5nsyl 629 . . . . . . . . 9  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  -.  ( P  mod  8
)  e.  { 1 ,  7 } )
6362iffalsed 3572 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
6428, 63eqtr4d 2232 . . . . . . 7  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
6564a1d 22 . . . . . 6  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  2  ||  P  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6665expimpd 363 . . . . 5  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6722, 66syl 14 . . . 4  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
6821, 67jaoi 717 . . 3  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  ( P  mod  8
)  e.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
694, 68sylbi 121 . 2  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
703, 69mpcom 36 1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   ifcif 3562   {cpr 3624   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   0cc0 7898   1c1 7899    - cmin 8216    / cdiv 8718   NNcn 9009   2c2 9060   3c3 9061   4c4 9062   5c5 9063   7c7 9065   8c8 9066   ZZcz 9345   |_cfl 10377    mod cmo 10433    || cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ico 9988  df-fz 10103  df-fl 10379  df-mod 10434  df-dvds 11972
This theorem is referenced by:  2lgs  15453
  Copyright terms: Public domain W3C validator