ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom11 Unicode version

Theorem binom11 10876
Description: Special case of the binomial theorem for  2 ^ N. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
binom11  |-  ( N  e.  NN0  ->  ( 2 ^ N )  = 
sum_ k  e.  ( 0 ... N ) ( N  _C  k
) )
Distinct variable group:    k, N

Proof of Theorem binom11
StepHypRef Expression
1 df-2 8479 . . . 4  |-  2  =  ( 1  +  1 )
21oveq1i 5662 . . 3  |-  ( 2 ^ N )  =  ( ( 1  +  1 ) ^ N
)
3 ax-1cn 7436 . . . 4  |-  1  e.  CC
4 binom1p 10875 . . . 4  |-  ( ( 1  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  1 ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( 1 ^ k
) ) )
53, 4mpan 415 . . 3  |-  ( N  e.  NN0  ->  ( ( 1  +  1 ) ^ N )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
1 ^ k ) ) )
62, 5syl5eq 2132 . 2  |-  ( N  e.  NN0  ->  ( 2 ^ N )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
1 ^ k ) ) )
7 elfzelz 9438 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
8 1exp 9980 . . . . . 6  |-  ( k  e.  ZZ  ->  (
1 ^ k )  =  1 )
97, 8syl 14 . . . . 5  |-  ( k  e.  ( 0 ... N )  ->  (
1 ^ k )  =  1 )
109oveq2d 5668 . . . 4  |-  ( k  e.  ( 0 ... N )  ->  (
( N  _C  k
)  x.  ( 1 ^ k ) )  =  ( ( N  _C  k )  x.  1 ) )
11 bccl2 10172 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  ( N  _C  k )  e.  NN )
1211nncnd 8434 . . . . 5  |-  ( k  e.  ( 0 ... N )  ->  ( N  _C  k )  e.  CC )
1312mulid1d 7503 . . . 4  |-  ( k  e.  ( 0 ... N )  ->  (
( N  _C  k
)  x.  1 )  =  ( N  _C  k ) )
1410, 13eqtrd 2120 . . 3  |-  ( k  e.  ( 0 ... N )  ->  (
( N  _C  k
)  x.  ( 1 ^ k ) )  =  ( N  _C  k ) )
1514sumeq2i 10749 . 2  |-  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( 1 ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( N  _C  k )
166, 15syl6eq 2136 1  |-  ( N  e.  NN0  ->  ( 2 ^ N )  = 
sum_ k  e.  ( 0 ... N ) ( N  _C  k
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    e. wcel 1438  (class class class)co 5652   CCcc 7346   0cc0 7348   1c1 7349    + caddc 7351    x. cmul 7353   2c2 8471   NN0cn0 8671   ZZcz 8748   ...cfz 9422   ^cexp 9950    _C cbc 10151   sum_csu 10738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462  ax-caucvg 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6290  df-en 6456  df-dom 6457  df-fin 6458  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-n0 8672  df-z 8749  df-uz 9018  df-q 9103  df-rp 9133  df-fz 9423  df-fzo 9550  df-iseq 9849  df-seq3 9850  df-exp 9951  df-fac 10130  df-bc 10152  df-ihash 10180  df-cj 10272  df-re 10273  df-im 10274  df-rsqrt 10427  df-abs 10428  df-clim 10663  df-isum 10739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator