ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1p Unicode version

Theorem binom1p 11261
Description: Special case of the binomial theorem for  ( 1  +  A
) ^ N. (Contributed by Paul Chapman, 10-May-2007.)
Assertion
Ref Expression
binom1p  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( A ^ k
) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem binom1p
StepHypRef Expression
1 ax-1cn 7720 . . 3  |-  1  e.  CC
2 binom 11260 . . 3  |-  ( ( 1  e.  CC  /\  A  e.  CC  /\  N  e.  NN0 )  ->  (
( 1  +  A
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( 1 ^ ( N  -  k )
)  x.  ( A ^ k ) ) ) )
31, 2mp3an1 1302 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( 1 ^ ( N  -  k
) )  x.  ( A ^ k ) ) ) )
4 fznn0sub 9844 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
54adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  -  k )  e.  NN0 )
65nn0zd 9178 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  -  k )  e.  ZZ )
7 1exp 10329 . . . . . . 7  |-  ( ( N  -  k )  e.  ZZ  ->  (
1 ^ ( N  -  k ) )  =  1 )
86, 7syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( 1 ^ ( N  -  k
) )  =  1 )
98oveq1d 5789 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( 1 ^ ( N  -  k ) )  x.  ( A ^ k
) )  =  ( 1  x.  ( A ^ k ) ) )
10 simpl 108 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
11 elfznn0 9901 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
12 expcl 10318 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
1310, 11, 12syl2an 287 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( A ^
k )  e.  CC )
1413mulid2d 7791 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( 1  x.  ( A ^ k
) )  =  ( A ^ k ) )
159, 14eqtrd 2172 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( 1 ^ ( N  -  k ) )  x.  ( A ^ k
) )  =  ( A ^ k ) )
1615oveq2d 5790 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( 1 ^ ( N  -  k
) )  x.  ( A ^ k ) ) )  =  ( ( N  _C  k )  x.  ( A ^
k ) ) )
1716sumeq2dv 11144 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( 1 ^ ( N  -  k ) )  x.  ( A ^
k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
183, 17eqtrd 2172 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( A ^ k
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7625   0cc0 7627   1c1 7628    + caddc 7630    x. cmul 7632    - cmin 7940   NN0cn0 8984   ZZcz 9061   ...cfz 9797   ^cexp 10299    _C cbc 10500   sum_csu 11129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130
This theorem is referenced by:  binom11  11262  binom1dif  11263
  Copyright terms: Public domain W3C validator