ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumle Unicode version

Theorem fsumle 11438
Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumle.1  |-  ( ph  ->  A  e.  Fin )
fsumle.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumle.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
fsumle.4  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
fsumle  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fsumle
StepHypRef Expression
1 fsumle.1 . . . 4  |-  ( ph  ->  A  e.  Fin )
2 fsumle.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
3 fsumle.2 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
42, 3resubcld 8312 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  ( C  -  B )  e.  RR )
5 fsumle.4 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
62, 3subge0d 8466 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
0  <_  ( C  -  B )  <->  B  <_  C ) )
75, 6mpbird 167 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  ( C  -  B
) )
81, 4, 7fsumge0 11434 . . 3  |-  ( ph  ->  0  <_  sum_ k  e.  A  ( C  -  B ) )
92recnd 7960 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
103recnd 7960 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
111, 9, 10fsumsub 11427 . . 3  |-  ( ph  -> 
sum_ k  e.  A  ( C  -  B
)  =  ( sum_ k  e.  A  C  -  sum_ k  e.  A  B ) )
128, 11breqtrd 4024 . 2  |-  ( ph  ->  0  <_  ( sum_ k  e.  A  C  -  sum_ k  e.  A  B ) )
131, 2fsumrecl 11376 . . 3  |-  ( ph  -> 
sum_ k  e.  A  C  e.  RR )
141, 3fsumrecl 11376 . . 3  |-  ( ph  -> 
sum_ k  e.  A  B  e.  RR )
1513, 14subge0d 8466 . 2  |-  ( ph  ->  ( 0  <_  ( sum_ k  e.  A  C  -  sum_ k  e.  A  B )  <->  sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
)
1612, 15mpbid 147 1  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   Fincfn 6730   RRcr 7785   0cc0 7786    <_ cle 7967    - cmin 8102   sum_csu 11328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-ico 9863  df-fz 9978  df-fzo 10111  df-seqfrec 10414  df-exp 10488  df-ihash 10722  df-cj 10818  df-re 10819  df-im 10820  df-rsqrt 10974  df-abs 10975  df-clim 11254  df-sumdc 11329
This theorem is referenced by:  cvgratnnlemabsle  11502  mertenslemi1  11510  cvgcmp2nlemabs  14263  trilpolemeq1  14271
  Copyright terms: Public domain W3C validator