Step | Hyp | Ref
| Expression |
1 | | eqid 2193 |
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) |
2 | | gsum0.z |
. . 3
⊢ 0 =
(0g‘𝐺) |
3 | | eqid 2193 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
4 | | id 19 |
. . 3
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ 𝑉) |
5 | | 0ex 4156 |
. . . 4
⊢ ∅
∈ V |
6 | 5 | a1i 9 |
. . 3
⊢ (𝐺 ∈ 𝑉 → ∅ ∈ V) |
7 | | f0 5444 |
. . . 4
⊢
∅:∅⟶(Base‘𝐺) |
8 | 7 | a1i 9 |
. . 3
⊢ (𝐺 ∈ 𝑉 →
∅:∅⟶(Base‘𝐺)) |
9 | 1, 2, 3, 4, 6, 8 | igsumval 12973 |
. 2
⊢ (𝐺 ∈ 𝑉 → (𝐺 Σg ∅) =
(℩𝑥((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))))) |
10 | | eqidd 2194 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → ∅ = ∅) |
11 | | eqidd 2194 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 0 = 0 ) |
12 | 10, 11 | jca 306 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → (∅ = ∅ ∧ 0 = 0
)) |
13 | 12 | orcd 734 |
. . 3
⊢ (𝐺 ∈ 𝑉 → ((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
14 | | fn0g 12958 |
. . . . . 6
⊢
0g Fn V |
15 | | elex 2771 |
. . . . . 6
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
16 | | funfvex 5571 |
. . . . . . 7
⊢ ((Fun
0g ∧ 𝐺
∈ dom 0g) → (0g‘𝐺) ∈ V) |
17 | 16 | funfni 5354 |
. . . . . 6
⊢
((0g Fn V ∧ 𝐺 ∈ V) → (0g‘𝐺) ∈ V) |
18 | 14, 15, 17 | sylancr 414 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → (0g‘𝐺) ∈ V) |
19 | 2, 18 | eqeltrid 2280 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 0 ∈ V) |
20 | | eueq 2931 |
. . . . . 6
⊢ ( 0 ∈ V
↔ ∃!𝑥 𝑥 = 0 ) |
21 | | eqid 2193 |
. . . . . . . . 9
⊢ ∅ =
∅ |
22 | 21 | biantrur 303 |
. . . . . . . 8
⊢ (𝑥 = 0 ↔ (∅ = ∅
∧ 𝑥 = 0
)) |
23 | | eluzfz1 10097 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑚 ∈ (𝑚...𝑛)) |
24 | | n0i 3452 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝑚...𝑛) → ¬ (𝑚...𝑛) = ∅) |
25 | 23, 24 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ¬ (𝑚...𝑛) = ∅) |
26 | 25 | neqcomd 2198 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ¬ ∅ = (𝑚...𝑛)) |
27 | 26 | intnanrd 933 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ¬ (∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) |
28 | 27 | nrex 2586 |
. . . . . . . . . 10
⊢ ¬
∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) |
29 | 28 | nex 1511 |
. . . . . . . . 9
⊢ ¬
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) |
30 | 29 | biorfi 747 |
. . . . . . . 8
⊢ ((∅
= ∅ ∧ 𝑥 = 0 ) ↔
((∅ = ∅ ∧ 𝑥
= 0 )
∨ ∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
31 | 22, 30 | bitri 184 |
. . . . . . 7
⊢ (𝑥 = 0 ↔ ((∅ = ∅
∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
32 | 31 | eubii 2051 |
. . . . . 6
⊢
(∃!𝑥 𝑥 = 0 ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
33 | 20, 32 | bitri 184 |
. . . . 5
⊢ ( 0 ∈ V
↔ ∃!𝑥((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
34 | 19, 33 | sylib 122 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
35 | | eqeq1 2200 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0 )) |
36 | 35 | anbi2d 464 |
. . . . . 6
⊢ (𝑥 = 0 → ((∅ = ∅
∧ 𝑥 = 0 ) ↔
(∅ = ∅ ∧ 0 = 0 ))) |
37 | | eqeq1 2200 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛) ↔ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) |
38 | 37 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) ↔ (∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
39 | 38 | rexbidv 2495 |
. . . . . . 7
⊢ (𝑥 = 0 → (∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
40 | 39 | exbidv 1836 |
. . . . . 6
⊢ (𝑥 = 0 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) |
41 | 36, 40 | orbi12d 794 |
. . . . 5
⊢ (𝑥 = 0 → (((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) ↔ ((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))))) |
42 | 41 | iota2 5244 |
. . . 4
⊢ (( 0 ∈ V
∧ ∃!𝑥((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) → (((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) = 0 )) |
43 | 19, 34, 42 | syl2anc 411 |
. . 3
⊢ (𝐺 ∈ 𝑉 → (((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) = 0 )) |
44 | 13, 43 | mpbid 147 |
. 2
⊢ (𝐺 ∈ 𝑉 → (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) = 0 ) |
45 | 9, 44 | eqtrd 2226 |
1
⊢ (𝐺 ∈ 𝑉 → (𝐺 Σg ∅) = 0
) |