| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 2 |   | gsum0.z | 
. . 3
⊢  0 =
(0g‘𝐺) | 
| 3 |   | eqid 2196 | 
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 4 |   | id 19 | 
. . 3
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ 𝑉) | 
| 5 |   | 0ex 4160 | 
. . . 4
⊢ ∅
∈ V | 
| 6 | 5 | a1i 9 | 
. . 3
⊢ (𝐺 ∈ 𝑉 → ∅ ∈ V) | 
| 7 |   | f0 5448 | 
. . . 4
⊢
∅:∅⟶(Base‘𝐺) | 
| 8 | 7 | a1i 9 | 
. . 3
⊢ (𝐺 ∈ 𝑉 →
∅:∅⟶(Base‘𝐺)) | 
| 9 | 1, 2, 3, 4, 6, 8 | igsumval 13033 | 
. 2
⊢ (𝐺 ∈ 𝑉 → (𝐺 Σg ∅) =
(℩𝑥((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))))) | 
| 10 |   | eqidd 2197 | 
. . . . 5
⊢ (𝐺 ∈ 𝑉 → ∅ = ∅) | 
| 11 |   | eqidd 2197 | 
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 0 = 0 ) | 
| 12 | 10, 11 | jca 306 | 
. . . 4
⊢ (𝐺 ∈ 𝑉 → (∅ = ∅ ∧ 0 = 0
)) | 
| 13 | 12 | orcd 734 | 
. . 3
⊢ (𝐺 ∈ 𝑉 → ((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 14 |   | fn0g 13018 | 
. . . . . 6
⊢
0g Fn V | 
| 15 |   | elex 2774 | 
. . . . . 6
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | 
| 16 |   | funfvex 5575 | 
. . . . . . 7
⊢ ((Fun
0g ∧ 𝐺
∈ dom 0g) → (0g‘𝐺) ∈ V) | 
| 17 | 16 | funfni 5358 | 
. . . . . 6
⊢
((0g Fn V ∧ 𝐺 ∈ V) → (0g‘𝐺) ∈ V) | 
| 18 | 14, 15, 17 | sylancr 414 | 
. . . . 5
⊢ (𝐺 ∈ 𝑉 → (0g‘𝐺) ∈ V) | 
| 19 | 2, 18 | eqeltrid 2283 | 
. . . 4
⊢ (𝐺 ∈ 𝑉 → 0 ∈ V) | 
| 20 |   | eueq 2935 | 
. . . . . 6
⊢ ( 0 ∈ V
↔ ∃!𝑥 𝑥 = 0 ) | 
| 21 |   | eqid 2196 | 
. . . . . . . . 9
⊢ ∅ =
∅ | 
| 22 | 21 | biantrur 303 | 
. . . . . . . 8
⊢ (𝑥 = 0 ↔ (∅ = ∅
∧ 𝑥 = 0
)) | 
| 23 |   | eluzfz1 10106 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑚 ∈ (𝑚...𝑛)) | 
| 24 |   | n0i 3456 | 
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝑚...𝑛) → ¬ (𝑚...𝑛) = ∅) | 
| 25 | 23, 24 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ¬ (𝑚...𝑛) = ∅) | 
| 26 | 25 | neqcomd 2201 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ¬ ∅ = (𝑚...𝑛)) | 
| 27 | 26 | intnanrd 933 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ¬ (∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) | 
| 28 | 27 | nrex 2589 | 
. . . . . . . . . 10
⊢  ¬
∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) | 
| 29 | 28 | nex 1514 | 
. . . . . . . . 9
⊢  ¬
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) | 
| 30 | 29 | biorfi 747 | 
. . . . . . . 8
⊢ ((∅
= ∅ ∧ 𝑥 = 0 ) ↔
((∅ = ∅ ∧ 𝑥
= 0 )
∨ ∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 31 | 22, 30 | bitri 184 | 
. . . . . . 7
⊢ (𝑥 = 0 ↔ ((∅ = ∅
∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 32 | 31 | eubii 2054 | 
. . . . . 6
⊢
(∃!𝑥 𝑥 = 0 ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 33 | 20, 32 | bitri 184 | 
. . . . 5
⊢ ( 0 ∈ V
↔ ∃!𝑥((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 34 | 19, 33 | sylib 122 | 
. . . 4
⊢ (𝐺 ∈ 𝑉 → ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 35 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0 )) | 
| 36 | 35 | anbi2d 464 | 
. . . . . 6
⊢ (𝑥 = 0 → ((∅ = ∅
∧ 𝑥 = 0 ) ↔
(∅ = ∅ ∧ 0 = 0 ))) | 
| 37 |   | eqeq1 2203 | 
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛) ↔ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) | 
| 38 | 37 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑥 = 0 → ((∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) ↔ (∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 39 | 38 | rexbidv 2498 | 
. . . . . . 7
⊢ (𝑥 = 0 → (∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 40 | 39 | exbidv 1839 | 
. . . . . 6
⊢ (𝑥 = 0 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) | 
| 41 | 36, 40 | orbi12d 794 | 
. . . . 5
⊢ (𝑥 = 0 → (((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) ↔ ((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))))) | 
| 42 | 41 | iota2 5248 | 
. . . 4
⊢ (( 0 ∈ V
∧ ∃!𝑥((∅ =
∅ ∧ 𝑥 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) → (((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) = 0 )) | 
| 43 | 19, 34, 42 | syl2anc 411 | 
. . 3
⊢ (𝐺 ∈ 𝑉 → (((∅ = ∅ ∧ 0 = 0 ) ∨
∃𝑚∃𝑛 ∈
(ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g‘𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) = 0 )) | 
| 44 | 13, 43 | mpbid 147 | 
. 2
⊢ (𝐺 ∈ 𝑉 → (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), ∅)‘𝑛)))) = 0 ) | 
| 45 | 9, 44 | eqtrd 2229 | 
1
⊢ (𝐺 ∈ 𝑉 → (𝐺 Σg ∅) = 0
) |