ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g GIF version

Theorem gsum0g 13146
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z 0 = (0g𝐺)
Assertion
Ref Expression
gsum0g (𝐺𝑉 → (𝐺 Σg ∅) = 0 )

Proof of Theorem gsum0g
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsum0.z . . 3 0 = (0g𝐺)
3 eqid 2204 . . 3 (+g𝐺) = (+g𝐺)
4 id 19 . . 3 (𝐺𝑉𝐺𝑉)
5 0ex 4170 . . . 4 ∅ ∈ V
65a1i 9 . . 3 (𝐺𝑉 → ∅ ∈ V)
7 f0 5460 . . . 4 ∅:∅⟶(Base‘𝐺)
87a1i 9 . . 3 (𝐺𝑉 → ∅:∅⟶(Base‘𝐺))
91, 2, 3, 4, 6, 8igsumval 13140 . 2 (𝐺𝑉 → (𝐺 Σg ∅) = (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
10 eqidd 2205 . . . . 5 (𝐺𝑉 → ∅ = ∅)
11 eqidd 2205 . . . . 5 (𝐺𝑉0 = 0 )
1210, 11jca 306 . . . 4 (𝐺𝑉 → (∅ = ∅ ∧ 0 = 0 ))
1312orcd 734 . . 3 (𝐺𝑉 → ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
14 fn0g 13125 . . . . . 6 0g Fn V
15 elex 2782 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
16 funfvex 5587 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1716funfni 5370 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1814, 15, 17sylancr 414 . . . . 5 (𝐺𝑉 → (0g𝐺) ∈ V)
192, 18eqeltrid 2291 . . . 4 (𝐺𝑉0 ∈ V)
20 eueq 2943 . . . . . 6 ( 0 ∈ V ↔ ∃!𝑥 𝑥 = 0 )
21 eqid 2204 . . . . . . . . 9 ∅ = ∅
2221biantrur 303 . . . . . . . 8 (𝑥 = 0 ↔ (∅ = ∅ ∧ 𝑥 = 0 ))
23 eluzfz1 10135 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ (𝑚...𝑛))
24 n0i 3465 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑚...𝑛) → ¬ (𝑚...𝑛) = ∅)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ¬ (𝑚...𝑛) = ∅)
2625neqcomd 2209 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑚) → ¬ ∅ = (𝑚...𝑛))
2726intnanrd 933 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑚) → ¬ (∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
2827nrex 2597 . . . . . . . . . 10 ¬ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
2928nex 1522 . . . . . . . . 9 ¬ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
3029biorfi 747 . . . . . . . 8 ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3122, 30bitri 184 . . . . . . 7 (𝑥 = 0 ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3231eubii 2062 . . . . . 6 (∃!𝑥 𝑥 = 0 ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3320, 32bitri 184 . . . . 5 ( 0 ∈ V ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3419, 33sylib 122 . . . 4 (𝐺𝑉 → ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
35 eqeq1 2211 . . . . . . 7 (𝑥 = 0 → (𝑥 = 00 = 0 ))
3635anbi2d 464 . . . . . 6 (𝑥 = 0 → ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ (∅ = ∅ ∧ 0 = 0 )))
37 eqeq1 2211 . . . . . . . . 9 (𝑥 = 0 → (𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛) ↔ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
3837anbi2d 464 . . . . . . . 8 (𝑥 = 0 → ((∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ (∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3938rexbidv 2506 . . . . . . 7 (𝑥 = 0 → (∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4039exbidv 1847 . . . . . 6 (𝑥 = 0 → (∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4136, 40orbi12d 794 . . . . 5 (𝑥 = 0 → (((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
4241iota2 5258 . . . 4 (( 0 ∈ V ∧ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4319, 34, 42syl2anc 411 . . 3 (𝐺𝑉 → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4413, 43mpbid 147 . 2 (𝐺𝑉 → (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 )
459, 44eqtrd 2237 1 (𝐺𝑉 → (𝐺 Σg ∅) = 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wex 1514  ∃!weu 2053  wcel 2175  wrex 2484  Vcvv 2771  c0 3459  cio 5227   Fn wfn 5263  wf 5264  cfv 5268  (class class class)co 5934  cuz 9630  ...cfz 10112  seqcseq 10573  Basecbs 12751  +gcplusg 12828  0gc0g 13006   Σg cgsu 13007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004  ax-pre-ltirr 8019
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-neg 8228  df-inn 9019  df-z 9355  df-uz 9631  df-fz 10113  df-seqfrec 10574  df-ndx 12754  df-slot 12755  df-base 12757  df-0g 13008  df-igsum 13009
This theorem is referenced by:  gsumwsubmcl  13246  gsumwmhm  13248  mulgnn0gsum  13382  gsumfzfsumlem0  14266
  Copyright terms: Public domain W3C validator