ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g GIF version

Theorem gsum0g 12979
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z 0 = (0g𝐺)
Assertion
Ref Expression
gsum0g (𝐺𝑉 → (𝐺 Σg ∅) = 0 )

Proof of Theorem gsum0g
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsum0.z . . 3 0 = (0g𝐺)
3 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
4 id 19 . . 3 (𝐺𝑉𝐺𝑉)
5 0ex 4156 . . . 4 ∅ ∈ V
65a1i 9 . . 3 (𝐺𝑉 → ∅ ∈ V)
7 f0 5444 . . . 4 ∅:∅⟶(Base‘𝐺)
87a1i 9 . . 3 (𝐺𝑉 → ∅:∅⟶(Base‘𝐺))
91, 2, 3, 4, 6, 8igsumval 12973 . 2 (𝐺𝑉 → (𝐺 Σg ∅) = (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
10 eqidd 2194 . . . . 5 (𝐺𝑉 → ∅ = ∅)
11 eqidd 2194 . . . . 5 (𝐺𝑉0 = 0 )
1210, 11jca 306 . . . 4 (𝐺𝑉 → (∅ = ∅ ∧ 0 = 0 ))
1312orcd 734 . . 3 (𝐺𝑉 → ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
14 fn0g 12958 . . . . . 6 0g Fn V
15 elex 2771 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
16 funfvex 5571 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1716funfni 5354 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1814, 15, 17sylancr 414 . . . . 5 (𝐺𝑉 → (0g𝐺) ∈ V)
192, 18eqeltrid 2280 . . . 4 (𝐺𝑉0 ∈ V)
20 eueq 2931 . . . . . 6 ( 0 ∈ V ↔ ∃!𝑥 𝑥 = 0 )
21 eqid 2193 . . . . . . . . 9 ∅ = ∅
2221biantrur 303 . . . . . . . 8 (𝑥 = 0 ↔ (∅ = ∅ ∧ 𝑥 = 0 ))
23 eluzfz1 10097 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ (𝑚...𝑛))
24 n0i 3452 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑚...𝑛) → ¬ (𝑚...𝑛) = ∅)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ¬ (𝑚...𝑛) = ∅)
2625neqcomd 2198 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑚) → ¬ ∅ = (𝑚...𝑛))
2726intnanrd 933 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑚) → ¬ (∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
2827nrex 2586 . . . . . . . . . 10 ¬ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
2928nex 1511 . . . . . . . . 9 ¬ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
3029biorfi 747 . . . . . . . 8 ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3122, 30bitri 184 . . . . . . 7 (𝑥 = 0 ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3231eubii 2051 . . . . . 6 (∃!𝑥 𝑥 = 0 ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3320, 32bitri 184 . . . . 5 ( 0 ∈ V ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3419, 33sylib 122 . . . 4 (𝐺𝑉 → ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
35 eqeq1 2200 . . . . . . 7 (𝑥 = 0 → (𝑥 = 00 = 0 ))
3635anbi2d 464 . . . . . 6 (𝑥 = 0 → ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ (∅ = ∅ ∧ 0 = 0 )))
37 eqeq1 2200 . . . . . . . . 9 (𝑥 = 0 → (𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛) ↔ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
3837anbi2d 464 . . . . . . . 8 (𝑥 = 0 → ((∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ (∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3938rexbidv 2495 . . . . . . 7 (𝑥 = 0 → (∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4039exbidv 1836 . . . . . 6 (𝑥 = 0 → (∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4136, 40orbi12d 794 . . . . 5 (𝑥 = 0 → (((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
4241iota2 5244 . . . 4 (( 0 ∈ V ∧ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4319, 34, 42syl2anc 411 . . 3 (𝐺𝑉 → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4413, 43mpbid 147 . 2 (𝐺𝑉 → (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 )
459, 44eqtrd 2226 1 (𝐺𝑉 → (𝐺 Σg ∅) = 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  ∃!weu 2042  wcel 2164  wrex 2473  Vcvv 2760  c0 3446  cio 5213   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  cuz 9592  ...cfz 10074  seqcseq 10518  Basecbs 12618  +gcplusg 12695  0gc0g 12867   Σg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by:  gsumwsubmcl  13068  gsumwmhm  13070  mulgnn0gsum  13198  gsumfzfsumlem0  14074
  Copyright terms: Public domain W3C validator