ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g GIF version

Theorem gsum0g 12982
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z 0 = (0g𝐺)
Assertion
Ref Expression
gsum0g (𝐺𝑉 → (𝐺 Σg ∅) = 0 )

Proof of Theorem gsum0g
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsum0.z . . 3 0 = (0g𝐺)
3 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
4 id 19 . . 3 (𝐺𝑉𝐺𝑉)
5 0ex 4157 . . . 4 ∅ ∈ V
65a1i 9 . . 3 (𝐺𝑉 → ∅ ∈ V)
7 f0 5445 . . . 4 ∅:∅⟶(Base‘𝐺)
87a1i 9 . . 3 (𝐺𝑉 → ∅:∅⟶(Base‘𝐺))
91, 2, 3, 4, 6, 8igsumval 12976 . 2 (𝐺𝑉 → (𝐺 Σg ∅) = (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
10 eqidd 2194 . . . . 5 (𝐺𝑉 → ∅ = ∅)
11 eqidd 2194 . . . . 5 (𝐺𝑉0 = 0 )
1210, 11jca 306 . . . 4 (𝐺𝑉 → (∅ = ∅ ∧ 0 = 0 ))
1312orcd 734 . . 3 (𝐺𝑉 → ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
14 fn0g 12961 . . . . . 6 0g Fn V
15 elex 2771 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
16 funfvex 5572 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1716funfni 5355 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1814, 15, 17sylancr 414 . . . . 5 (𝐺𝑉 → (0g𝐺) ∈ V)
192, 18eqeltrid 2280 . . . 4 (𝐺𝑉0 ∈ V)
20 eueq 2932 . . . . . 6 ( 0 ∈ V ↔ ∃!𝑥 𝑥 = 0 )
21 eqid 2193 . . . . . . . . 9 ∅ = ∅
2221biantrur 303 . . . . . . . 8 (𝑥 = 0 ↔ (∅ = ∅ ∧ 𝑥 = 0 ))
23 eluzfz1 10100 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ (𝑚...𝑛))
24 n0i 3453 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑚...𝑛) → ¬ (𝑚...𝑛) = ∅)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ¬ (𝑚...𝑛) = ∅)
2625neqcomd 2198 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑚) → ¬ ∅ = (𝑚...𝑛))
2726intnanrd 933 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑚) → ¬ (∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
2827nrex 2586 . . . . . . . . . 10 ¬ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
2928nex 1511 . . . . . . . . 9 ¬ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
3029biorfi 747 . . . . . . . 8 ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3122, 30bitri 184 . . . . . . 7 (𝑥 = 0 ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3231eubii 2051 . . . . . 6 (∃!𝑥 𝑥 = 0 ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3320, 32bitri 184 . . . . 5 ( 0 ∈ V ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3419, 33sylib 122 . . . 4 (𝐺𝑉 → ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
35 eqeq1 2200 . . . . . . 7 (𝑥 = 0 → (𝑥 = 00 = 0 ))
3635anbi2d 464 . . . . . 6 (𝑥 = 0 → ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ (∅ = ∅ ∧ 0 = 0 )))
37 eqeq1 2200 . . . . . . . . 9 (𝑥 = 0 → (𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛) ↔ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
3837anbi2d 464 . . . . . . . 8 (𝑥 = 0 → ((∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ (∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3938rexbidv 2495 . . . . . . 7 (𝑥 = 0 → (∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4039exbidv 1836 . . . . . 6 (𝑥 = 0 → (∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4136, 40orbi12d 794 . . . . 5 (𝑥 = 0 → (((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
4241iota2 5245 . . . 4 (( 0 ∈ V ∧ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4319, 34, 42syl2anc 411 . . 3 (𝐺𝑉 → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4413, 43mpbid 147 . 2 (𝐺𝑉 → (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 )
459, 44eqtrd 2226 1 (𝐺𝑉 → (𝐺 Σg ∅) = 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  ∃!weu 2042  wcel 2164  wrex 2473  Vcvv 2760  c0 3447  cio 5214   Fn wfn 5250  wf 5251  cfv 5255  (class class class)co 5919  cuz 9595  ...cfz 10077  seqcseq 10521  Basecbs 12621  +gcplusg 12698  0gc0g 12870   Σg cgsu 12871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-pre-ltirr 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-neg 8195  df-inn 8985  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-0g 12872  df-igsum 12873
This theorem is referenced by:  gsumwsubmcl  13071  gsumwmhm  13073  mulgnn0gsum  13201  gsumfzfsumlem0  14085
  Copyright terms: Public domain W3C validator