ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g GIF version

Theorem gsum0g 13039
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z 0 = (0g𝐺)
Assertion
Ref Expression
gsum0g (𝐺𝑉 → (𝐺 Σg ∅) = 0 )

Proof of Theorem gsum0g
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsum0.z . . 3 0 = (0g𝐺)
3 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
4 id 19 . . 3 (𝐺𝑉𝐺𝑉)
5 0ex 4160 . . . 4 ∅ ∈ V
65a1i 9 . . 3 (𝐺𝑉 → ∅ ∈ V)
7 f0 5448 . . . 4 ∅:∅⟶(Base‘𝐺)
87a1i 9 . . 3 (𝐺𝑉 → ∅:∅⟶(Base‘𝐺))
91, 2, 3, 4, 6, 8igsumval 13033 . 2 (𝐺𝑉 → (𝐺 Σg ∅) = (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
10 eqidd 2197 . . . . 5 (𝐺𝑉 → ∅ = ∅)
11 eqidd 2197 . . . . 5 (𝐺𝑉0 = 0 )
1210, 11jca 306 . . . 4 (𝐺𝑉 → (∅ = ∅ ∧ 0 = 0 ))
1312orcd 734 . . 3 (𝐺𝑉 → ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
14 fn0g 13018 . . . . . 6 0g Fn V
15 elex 2774 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
16 funfvex 5575 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1716funfni 5358 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1814, 15, 17sylancr 414 . . . . 5 (𝐺𝑉 → (0g𝐺) ∈ V)
192, 18eqeltrid 2283 . . . 4 (𝐺𝑉0 ∈ V)
20 eueq 2935 . . . . . 6 ( 0 ∈ V ↔ ∃!𝑥 𝑥 = 0 )
21 eqid 2196 . . . . . . . . 9 ∅ = ∅
2221biantrur 303 . . . . . . . 8 (𝑥 = 0 ↔ (∅ = ∅ ∧ 𝑥 = 0 ))
23 eluzfz1 10106 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ (𝑚...𝑛))
24 n0i 3456 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑚...𝑛) → ¬ (𝑚...𝑛) = ∅)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ¬ (𝑚...𝑛) = ∅)
2625neqcomd 2201 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑚) → ¬ ∅ = (𝑚...𝑛))
2726intnanrd 933 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑚) → ¬ (∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
2827nrex 2589 . . . . . . . . . 10 ¬ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
2928nex 1514 . . . . . . . . 9 ¬ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
3029biorfi 747 . . . . . . . 8 ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3122, 30bitri 184 . . . . . . 7 (𝑥 = 0 ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3231eubii 2054 . . . . . 6 (∃!𝑥 𝑥 = 0 ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3320, 32bitri 184 . . . . 5 ( 0 ∈ V ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3419, 33sylib 122 . . . 4 (𝐺𝑉 → ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
35 eqeq1 2203 . . . . . . 7 (𝑥 = 0 → (𝑥 = 00 = 0 ))
3635anbi2d 464 . . . . . 6 (𝑥 = 0 → ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ (∅ = ∅ ∧ 0 = 0 )))
37 eqeq1 2203 . . . . . . . . 9 (𝑥 = 0 → (𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛) ↔ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
3837anbi2d 464 . . . . . . . 8 (𝑥 = 0 → ((∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ (∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3938rexbidv 2498 . . . . . . 7 (𝑥 = 0 → (∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4039exbidv 1839 . . . . . 6 (𝑥 = 0 → (∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4136, 40orbi12d 794 . . . . 5 (𝑥 = 0 → (((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
4241iota2 5248 . . . 4 (( 0 ∈ V ∧ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4319, 34, 42syl2anc 411 . . 3 (𝐺𝑉 → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4413, 43mpbid 147 . 2 (𝐺𝑉 → (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 )
459, 44eqtrd 2229 1 (𝐺𝑉 → (𝐺 Σg ∅) = 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  ∃!weu 2045  wcel 2167  wrex 2476  Vcvv 2763  c0 3450  cio 5217   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  cuz 9601  ...cfz 10083  seqcseq 10539  Basecbs 12678  +gcplusg 12755  0gc0g 12927   Σg cgsu 12928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-inn 8991  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929  df-igsum 12930
This theorem is referenced by:  gsumwsubmcl  13128  gsumwmhm  13130  mulgnn0gsum  13258  gsumfzfsumlem0  14142
  Copyright terms: Public domain W3C validator