ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsum0g GIF version

Theorem gsum0g 13424
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z 0 = (0g𝐺)
Assertion
Ref Expression
gsum0g (𝐺𝑉 → (𝐺 Σg ∅) = 0 )

Proof of Theorem gsum0g
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsum0.z . . 3 0 = (0g𝐺)
3 eqid 2229 . . 3 (+g𝐺) = (+g𝐺)
4 id 19 . . 3 (𝐺𝑉𝐺𝑉)
5 0ex 4210 . . . 4 ∅ ∈ V
65a1i 9 . . 3 (𝐺𝑉 → ∅ ∈ V)
7 f0 5515 . . . 4 ∅:∅⟶(Base‘𝐺)
87a1i 9 . . 3 (𝐺𝑉 → ∅:∅⟶(Base‘𝐺))
91, 2, 3, 4, 6, 8igsumval 13418 . 2 (𝐺𝑉 → (𝐺 Σg ∅) = (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
10 eqidd 2230 . . . . 5 (𝐺𝑉 → ∅ = ∅)
11 eqidd 2230 . . . . 5 (𝐺𝑉0 = 0 )
1210, 11jca 306 . . . 4 (𝐺𝑉 → (∅ = ∅ ∧ 0 = 0 ))
1312orcd 738 . . 3 (𝐺𝑉 → ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
14 fn0g 13403 . . . . . 6 0g Fn V
15 elex 2811 . . . . . 6 (𝐺𝑉𝐺 ∈ V)
16 funfvex 5643 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1716funfni 5422 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1814, 15, 17sylancr 414 . . . . 5 (𝐺𝑉 → (0g𝐺) ∈ V)
192, 18eqeltrid 2316 . . . 4 (𝐺𝑉0 ∈ V)
20 eueq 2974 . . . . . 6 ( 0 ∈ V ↔ ∃!𝑥 𝑥 = 0 )
21 eqid 2229 . . . . . . . . 9 ∅ = ∅
2221biantrur 303 . . . . . . . 8 (𝑥 = 0 ↔ (∅ = ∅ ∧ 𝑥 = 0 ))
23 eluzfz1 10223 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ (𝑚...𝑛))
24 n0i 3497 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑚...𝑛) → ¬ (𝑚...𝑛) = ∅)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ¬ (𝑚...𝑛) = ∅)
2625neqcomd 2234 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑚) → ¬ ∅ = (𝑚...𝑛))
2726intnanrd 937 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑚) → ¬ (∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
2827nrex 2622 . . . . . . . . . 10 ¬ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
2928nex 1546 . . . . . . . . 9 ¬ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))
3029biorfi 751 . . . . . . . 8 ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3122, 30bitri 184 . . . . . . 7 (𝑥 = 0 ↔ ((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3231eubii 2086 . . . . . 6 (∃!𝑥 𝑥 = 0 ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3320, 32bitri 184 . . . . 5 ( 0 ∈ V ↔ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3419, 33sylib 122 . . . 4 (𝐺𝑉 → ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
35 eqeq1 2236 . . . . . . 7 (𝑥 = 0 → (𝑥 = 00 = 0 ))
3635anbi2d 464 . . . . . 6 (𝑥 = 0 → ((∅ = ∅ ∧ 𝑥 = 0 ) ↔ (∅ = ∅ ∧ 0 = 0 )))
37 eqeq1 2236 . . . . . . . . 9 (𝑥 = 0 → (𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛) ↔ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))
3837anbi2d 464 . . . . . . . 8 (𝑥 = 0 → ((∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ (∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
3938rexbidv 2531 . . . . . . 7 (𝑥 = 0 → (∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4039exbidv 1871 . . . . . 6 (𝑥 = 0 → (∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))))
4136, 40orbi12d 798 . . . . 5 (𝑥 = 0 → (((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ ((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛)))))
4241iota2 5307 . . . 4 (( 0 ∈ V ∧ ∃!𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4319, 34, 42syl2anc 411 . . 3 (𝐺𝑉 → (((∅ = ∅ ∧ 0 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 0 = (seq𝑚((+g𝐺), ∅)‘𝑛))) ↔ (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 ))
4413, 43mpbid 147 . 2 (𝐺𝑉 → (℩𝑥((∅ = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(∅ = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), ∅)‘𝑛)))) = 0 )
459, 44eqtrd 2262 1 (𝐺𝑉 → (𝐺 Σg ∅) = 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  wrex 2509  Vcvv 2799  c0 3491  cio 5275   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  cuz 9718  ...cfz 10200  seqcseq 10664  Basecbs 13027  +gcplusg 13105  0gc0g 13284   Σg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumwsubmcl  13524  gsumwmhm  13526  mulgnn0gsum  13660  gsumfzfsumlem0  14544
  Copyright terms: Public domain W3C validator