| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcld | GIF version | ||
| Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negcld | ⊢ (𝜑 → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negcl 8346 | . 2 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℂcc 7997 -cneg 8318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 |
| This theorem is referenced by: negcon1ad 8452 mulext1 8759 recextlem1 8798 div2subap 8984 prodgt0 8999 negiso 9102 peano2z 9482 zaddcllemneg 9485 infrenegsupex 9789 mul2lt0rlt0 9955 ceiqm1l 10533 expaddzaplem 10804 cjreb 11377 resqrexlemover 11521 minabs 11747 climshft 11815 climshft2 11817 fsumsub 11963 telfsumo2 11978 geosergap 12017 eftlub 12201 efi4p 12228 oexpneg 12388 bitscmp 12469 gcdaddm 12505 pcadd2 12864 gznegcl 12898 mulgdirlem 13690 mulgdir 13691 gsumfzconst 13878 znunit 14623 negcncf 15279 limcimolemlt 15338 dvrecap 15387 dvmptsubcn 15397 sinmpi 15489 cosmpi 15490 sinppi 15491 cosppi 15492 rpcxpneg 15581 apdifflemr 16415 |
| Copyright terms: Public domain | W3C validator |