| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcld | GIF version | ||
| Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negcld | ⊢ (𝜑 → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | negcl 8245 | . 2 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7896 -cneg 8217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 df-neg 8219 |
| This theorem is referenced by: negcon1ad 8351 mulext1 8658 recextlem1 8697 div2subap 8883 prodgt0 8898 negiso 9001 peano2z 9381 zaddcllemneg 9384 infrenegsupex 9687 mul2lt0rlt0 9853 ceiqm1l 10422 expaddzaplem 10693 cjreb 11050 resqrexlemover 11194 minabs 11420 climshft 11488 climshft2 11490 fsumsub 11636 telfsumo2 11651 geosergap 11690 eftlub 11874 efi4p 11901 oexpneg 12061 bitscmp 12142 gcdaddm 12178 pcadd2 12537 gznegcl 12571 mulgdirlem 13361 mulgdir 13362 gsumfzconst 13549 znunit 14293 negcncf 14949 limcimolemlt 15008 dvrecap 15057 dvmptsubcn 15067 sinmpi 15159 cosmpi 15160 sinppi 15161 cosppi 15162 rpcxpneg 15251 apdifflemr 15804 |
| Copyright terms: Public domain | W3C validator |