![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negcld | GIF version |
Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
negcld | ⊢ (𝜑 → -𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | negcl 8219 | . 2 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℂcc 7870 -cneg 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-neg 8193 |
This theorem is referenced by: negcon1ad 8325 mulext1 8631 recextlem1 8670 div2subap 8856 prodgt0 8871 negiso 8974 peano2z 9353 zaddcllemneg 9356 infrenegsupex 9659 mul2lt0rlt0 9825 ceiqm1l 10382 expaddzaplem 10653 cjreb 11010 resqrexlemover 11154 minabs 11379 climshft 11447 climshft2 11449 fsumsub 11595 telfsumo2 11610 geosergap 11649 eftlub 11833 efi4p 11860 oexpneg 12018 gcdaddm 12121 pcadd2 12479 gznegcl 12513 mulgdirlem 13223 mulgdir 13224 gsumfzconst 13411 znunit 14147 negcncf 14759 limcimolemlt 14818 dvrecap 14862 dvmptsubcn 14870 sinmpi 14950 cosmpi 14951 sinppi 14952 cosppi 14953 rpcxpneg 15042 apdifflemr 15537 |
Copyright terms: Public domain | W3C validator |