ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcld GIF version

Theorem negcld 8072
Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
negcld (𝜑 → -𝐴 ∈ ℂ)

Proof of Theorem negcld
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 negcl 7974 . 2 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
31, 2syl 14 1 (𝜑 → -𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  cc 7630  -cneg 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7724  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7947  df-neg 7948
This theorem is referenced by:  negcon1ad  8080  mulext1  8386  subap0d  8418  recextlem1  8424  div2subap  8608  prodgt0  8622  negiso  8725  peano2z  9102  zaddcllemneg  9105  infrenegsupex  9401  mul2lt0rlt0  9558  ceiqm1l  10096  expaddzaplem  10348  cjreb  10650  resqrexlemover  10794  minabs  11019  climshft  11085  climshft2  11087  fsumsub  11233  telfsumo2  11248  geosergap  11287  eftlub  11408  efi4p  11435  oexpneg  11585  gcdaddm  11683  negcncf  12771  limcimolemlt  12816  dvrecap  12860  dvmptsubcn  12868  sinmpi  12918  cosmpi  12919  sinppi  12920  cosppi  12921  rpcxpneg  13007  apdifflemr  13326
  Copyright terms: Public domain W3C validator