![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0d | Unicode version |
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nnne0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnne0 9010 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 |
This theorem is referenced by: eluz2n0 9635 flqdiv 10392 modsumfzodifsn 10467 facne0 10808 gcdnncl 12104 gcdeq0 12114 dvdsgcdidd 12131 mulgcd 12153 sqgcd 12166 lcmeq0 12209 lcmgcdlem 12215 qredeu 12235 cncongr1 12241 prmind2 12258 isprm5lem 12279 divgcdodd 12281 oddpwdclemxy 12307 oddpwdclemodd 12310 divnumden 12334 hashdvds 12359 pythagtriplem4 12406 pythagtriplem19 12420 pcprendvds2 12429 pcpremul 12431 pceulem 12432 pcqmul 12441 pc2dvds 12468 pcaddlem 12477 pcadd 12478 pcmpt2 12482 pcmptdvds 12483 pcbc 12489 expnprm 12491 prmpwdvds 12493 pockthlem 12494 4sqlem8 12523 4sqlem9 12524 4sqlem10 12525 4sqlem12 12540 4sqlem14 12542 4sqlem17 12545 znrrg 14148 lgsval2lem 15126 2sqlem3 15204 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |