| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| Ref | Expression |
|---|---|
| nnne0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnne0 9066 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-inn 9039 |
| This theorem is referenced by: eluz2n0 9693 flqdiv 10468 modsumfzodifsn 10543 facne0 10884 bitsmod 12300 gcdnncl 12321 gcdeq0 12331 dvdsgcdidd 12348 mulgcd 12370 sqgcd 12383 lcmeq0 12426 lcmgcdlem 12432 qredeu 12452 cncongr1 12458 prmind2 12475 isprm5lem 12496 divgcdodd 12498 oddpwdclemxy 12524 oddpwdclemodd 12527 divnumden 12551 hashdvds 12576 pythagtriplem4 12624 pythagtriplem19 12638 pcprendvds2 12647 pcpremul 12649 pceulem 12650 pcqmul 12659 pc2dvds 12686 pcaddlem 12695 pcadd 12696 pcmpt2 12700 pcmptdvds 12701 pcbc 12707 expnprm 12709 prmpwdvds 12711 pockthlem 12712 4sqlem8 12741 4sqlem9 12742 4sqlem10 12743 4sqlem12 12758 4sqlem14 12760 4sqlem17 12763 znrrg 14455 dvply1 15270 mpodvdsmulf1o 15495 lgsval2lem 15520 lgsquad2lem1 15591 2sqlem3 15627 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |