| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| Ref | Expression |
|---|---|
| nnne0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnne0 9035 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-inn 9008 |
| This theorem is referenced by: eluz2n0 9661 flqdiv 10430 modsumfzodifsn 10505 facne0 10846 bitsmod 12138 gcdnncl 12159 gcdeq0 12169 dvdsgcdidd 12186 mulgcd 12208 sqgcd 12221 lcmeq0 12264 lcmgcdlem 12270 qredeu 12290 cncongr1 12296 prmind2 12313 isprm5lem 12334 divgcdodd 12336 oddpwdclemxy 12362 oddpwdclemodd 12365 divnumden 12389 hashdvds 12414 pythagtriplem4 12462 pythagtriplem19 12476 pcprendvds2 12485 pcpremul 12487 pceulem 12488 pcqmul 12497 pc2dvds 12524 pcaddlem 12533 pcadd 12534 pcmpt2 12538 pcmptdvds 12539 pcbc 12545 expnprm 12547 prmpwdvds 12549 pockthlem 12550 4sqlem8 12579 4sqlem9 12580 4sqlem10 12581 4sqlem12 12596 4sqlem14 12598 4sqlem17 12601 znrrg 14292 dvply1 15085 mpodvdsmulf1o 15310 lgsval2lem 15335 lgsquad2lem1 15406 2sqlem3 15442 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |