| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnne0d | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| nnge1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| nnne0d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnge1d.1 | 
. 2
 | |
| 2 | nnne0 9018 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 | 
| This theorem is referenced by: eluz2n0 9644 flqdiv 10413 modsumfzodifsn 10488 facne0 10829 gcdnncl 12134 gcdeq0 12144 dvdsgcdidd 12161 mulgcd 12183 sqgcd 12196 lcmeq0 12239 lcmgcdlem 12245 qredeu 12265 cncongr1 12271 prmind2 12288 isprm5lem 12309 divgcdodd 12311 oddpwdclemxy 12337 oddpwdclemodd 12340 divnumden 12364 hashdvds 12389 pythagtriplem4 12437 pythagtriplem19 12451 pcprendvds2 12460 pcpremul 12462 pceulem 12463 pcqmul 12472 pc2dvds 12499 pcaddlem 12508 pcadd 12509 pcmpt2 12513 pcmptdvds 12514 pcbc 12520 expnprm 12522 prmpwdvds 12524 pockthlem 12525 4sqlem8 12554 4sqlem9 12555 4sqlem10 12556 4sqlem12 12571 4sqlem14 12573 4sqlem17 12576 znrrg 14216 dvply1 15001 mpodvdsmulf1o 15226 lgsval2lem 15251 lgsquad2lem1 15322 2sqlem3 15358 2sqlem8 15364 | 
| Copyright terms: Public domain | W3C validator |