| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| Ref | Expression |
|---|---|
| nnne0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnne0 9099 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 |
| This theorem is referenced by: eluz2n0 9726 flqdiv 10503 modsumfzodifsn 10578 facne0 10919 bitsmod 12382 gcdnncl 12403 gcdeq0 12413 dvdsgcdidd 12430 mulgcd 12452 sqgcd 12465 lcmeq0 12508 lcmgcdlem 12514 qredeu 12534 cncongr1 12540 prmind2 12557 isprm5lem 12578 divgcdodd 12580 oddpwdclemxy 12606 oddpwdclemodd 12609 divnumden 12633 hashdvds 12658 pythagtriplem4 12706 pythagtriplem19 12720 pcprendvds2 12729 pcpremul 12731 pceulem 12732 pcqmul 12741 pc2dvds 12768 pcaddlem 12777 pcadd 12778 pcmpt2 12782 pcmptdvds 12783 pcbc 12789 expnprm 12791 prmpwdvds 12793 pockthlem 12794 4sqlem8 12823 4sqlem9 12824 4sqlem10 12825 4sqlem12 12840 4sqlem14 12842 4sqlem17 12845 znrrg 14537 dvply1 15352 mpodvdsmulf1o 15577 lgsval2lem 15602 lgsquad2lem1 15673 2sqlem3 15709 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |