ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnne0d Unicode version

Theorem nnne0d 8438
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
nnne0d  |-  ( ph  ->  A  =/=  0 )

Proof of Theorem nnne0d
StepHypRef Expression
1 nnge1d.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnne0 8422 . 2  |-  ( A  e.  NN  ->  A  =/=  0 )
31, 2syl 14 1  |-  ( ph  ->  A  =/=  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438    =/= wne 2255   0cc0 7329   NNcn 8394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1re 7418  ax-addrcl 7421  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-pre-ltirr 7436  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-xp 4434  df-cnv 4436  df-iota 4967  df-fv 5010  df-ov 5637  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-inn 8395
This theorem is referenced by:  flqdiv  9693  modsumfzodifsn  9768  facne0  10110  gcdnncl  11052  gcdeq0  11061  mulgcd  11098  sqgcd  11111  lcmeq0  11146  lcmgcdlem  11152  qredeu  11172  cncongr1  11178  prmind2  11195  divgcdodd  11215  oddpwdclemxy  11240  oddpwdclemodd  11243  divnumden  11267  hashdvds  11290
  Copyright terms: Public domain W3C validator