![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0d | Unicode version |
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nnne0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnne0 9012 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-inn 8985 |
This theorem is referenced by: eluz2n0 9638 flqdiv 10395 modsumfzodifsn 10470 facne0 10811 gcdnncl 12107 gcdeq0 12117 dvdsgcdidd 12134 mulgcd 12156 sqgcd 12169 lcmeq0 12212 lcmgcdlem 12218 qredeu 12238 cncongr1 12244 prmind2 12261 isprm5lem 12282 divgcdodd 12284 oddpwdclemxy 12310 oddpwdclemodd 12313 divnumden 12337 hashdvds 12362 pythagtriplem4 12409 pythagtriplem19 12423 pcprendvds2 12432 pcpremul 12434 pceulem 12435 pcqmul 12444 pc2dvds 12471 pcaddlem 12480 pcadd 12481 pcmpt2 12485 pcmptdvds 12486 pcbc 12492 expnprm 12494 prmpwdvds 12496 pockthlem 12497 4sqlem8 12526 4sqlem9 12527 4sqlem10 12528 4sqlem12 12543 4sqlem14 12545 4sqlem17 12548 znrrg 14159 dvply1 14943 lgsval2lem 15167 lgsquad2lem1 15238 2sqlem3 15274 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |