| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| Ref | Expression |
|---|---|
| nnne0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnne0 9138 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-inn 9111 |
| This theorem is referenced by: eluz2n0 9765 flqdiv 10543 modsumfzodifsn 10618 facne0 10959 bitsmod 12467 gcdnncl 12488 gcdeq0 12498 dvdsgcdidd 12515 mulgcd 12537 sqgcd 12550 lcmeq0 12593 lcmgcdlem 12599 qredeu 12619 cncongr1 12625 prmind2 12642 isprm5lem 12663 divgcdodd 12665 oddpwdclemxy 12691 oddpwdclemodd 12694 divnumden 12718 hashdvds 12743 pythagtriplem4 12791 pythagtriplem19 12805 pcprendvds2 12814 pcpremul 12816 pceulem 12817 pcqmul 12826 pc2dvds 12853 pcaddlem 12862 pcadd 12863 pcmpt2 12867 pcmptdvds 12868 pcbc 12874 expnprm 12876 prmpwdvds 12878 pockthlem 12879 4sqlem8 12908 4sqlem9 12909 4sqlem10 12910 4sqlem12 12925 4sqlem14 12927 4sqlem17 12930 znrrg 14624 dvply1 15439 mpodvdsmulf1o 15664 lgsval2lem 15689 lgsquad2lem1 15760 2sqlem3 15796 2sqlem8 15802 |
| Copyright terms: Public domain | W3C validator |