| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnne0 9064 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ≠ wne 2376 0cc0 7925 ℕcn 9036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-inn 9037 |
| This theorem is referenced by: eluz2n0 9691 flqdiv 10466 modsumfzodifsn 10541 facne0 10882 bitsmod 12267 gcdnncl 12288 gcdeq0 12298 dvdsgcdidd 12315 mulgcd 12337 sqgcd 12350 lcmeq0 12393 lcmgcdlem 12399 qredeu 12419 cncongr1 12425 prmind2 12442 isprm5lem 12463 divgcdodd 12465 oddpwdclemxy 12491 oddpwdclemodd 12494 divnumden 12518 hashdvds 12543 pythagtriplem4 12591 pythagtriplem19 12605 pcprendvds2 12614 pcpremul 12616 pceulem 12617 pcqmul 12626 pc2dvds 12653 pcaddlem 12662 pcadd 12663 pcmpt2 12667 pcmptdvds 12668 pcbc 12674 expnprm 12676 prmpwdvds 12678 pockthlem 12679 4sqlem8 12708 4sqlem9 12709 4sqlem10 12710 4sqlem12 12725 4sqlem14 12727 4sqlem17 12730 znrrg 14422 dvply1 15237 mpodvdsmulf1o 15462 lgsval2lem 15487 lgsquad2lem1 15558 2sqlem3 15594 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |