| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnne0 9063 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ≠ wne 2375 0cc0 7924 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-iota 5231 df-fv 5278 df-ov 5946 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-inn 9036 |
| This theorem is referenced by: eluz2n0 9690 flqdiv 10464 modsumfzodifsn 10539 facne0 10880 bitsmod 12238 gcdnncl 12259 gcdeq0 12269 dvdsgcdidd 12286 mulgcd 12308 sqgcd 12321 lcmeq0 12364 lcmgcdlem 12370 qredeu 12390 cncongr1 12396 prmind2 12413 isprm5lem 12434 divgcdodd 12436 oddpwdclemxy 12462 oddpwdclemodd 12465 divnumden 12489 hashdvds 12514 pythagtriplem4 12562 pythagtriplem19 12576 pcprendvds2 12585 pcpremul 12587 pceulem 12588 pcqmul 12597 pc2dvds 12624 pcaddlem 12633 pcadd 12634 pcmpt2 12638 pcmptdvds 12639 pcbc 12645 expnprm 12647 prmpwdvds 12649 pockthlem 12650 4sqlem8 12679 4sqlem9 12680 4sqlem10 12681 4sqlem12 12696 4sqlem14 12698 4sqlem17 12701 znrrg 14393 dvply1 15208 mpodvdsmulf1o 15433 lgsval2lem 15458 lgsquad2lem1 15529 2sqlem3 15565 2sqlem8 15571 |
| Copyright terms: Public domain | W3C validator |