Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnne0d | GIF version |
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnne0 8881 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ≠ wne 2335 0cc0 7749 ℕcn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-pre-ltirr 7861 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-iota 5152 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-inn 8854 |
This theorem is referenced by: eluz2n0 9504 flqdiv 10252 modsumfzodifsn 10327 facne0 10646 gcdnncl 11896 gcdeq0 11906 dvdsgcdidd 11923 mulgcd 11945 sqgcd 11958 lcmeq0 11999 lcmgcdlem 12005 qredeu 12025 cncongr1 12031 prmind2 12048 isprm5lem 12069 divgcdodd 12071 oddpwdclemxy 12097 oddpwdclemodd 12100 divnumden 12124 hashdvds 12149 pythagtriplem4 12196 pythagtriplem19 12210 pcprendvds2 12219 pcpremul 12221 pceulem 12222 pcqmul 12231 pc2dvds 12257 pcaddlem 12266 pcadd 12267 pcmpt2 12270 pcmptdvds 12271 pcbc 12277 expnprm 12279 prmpwdvds 12281 pockthlem 12282 4sqlem8 12311 4sqlem9 12312 4sqlem10 12313 lgsval2lem 13511 2sqlem3 13553 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |