| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnne0 9094 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ≠ wne 2377 0cc0 7955 ℕcn 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-xp 4694 df-cnv 4696 df-iota 5246 df-fv 5293 df-ov 5965 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-inn 9067 |
| This theorem is referenced by: eluz2n0 9721 flqdiv 10498 modsumfzodifsn 10573 facne0 10914 bitsmod 12352 gcdnncl 12373 gcdeq0 12383 dvdsgcdidd 12400 mulgcd 12422 sqgcd 12435 lcmeq0 12478 lcmgcdlem 12484 qredeu 12504 cncongr1 12510 prmind2 12527 isprm5lem 12548 divgcdodd 12550 oddpwdclemxy 12576 oddpwdclemodd 12579 divnumden 12603 hashdvds 12628 pythagtriplem4 12676 pythagtriplem19 12690 pcprendvds2 12699 pcpremul 12701 pceulem 12702 pcqmul 12711 pc2dvds 12738 pcaddlem 12747 pcadd 12748 pcmpt2 12752 pcmptdvds 12753 pcbc 12759 expnprm 12761 prmpwdvds 12763 pockthlem 12764 4sqlem8 12793 4sqlem9 12794 4sqlem10 12795 4sqlem12 12810 4sqlem14 12812 4sqlem17 12815 znrrg 14507 dvply1 15322 mpodvdsmulf1o 15547 lgsval2lem 15572 lgsquad2lem1 15643 2sqlem3 15679 2sqlem8 15685 |
| Copyright terms: Public domain | W3C validator |