ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnne0d GIF version

Theorem nnne0d 8962
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnne0d (𝜑𝐴 ≠ 0)

Proof of Theorem nnne0d
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnne0 8945 . 2 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
31, 2syl 14 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wne 2347  0cc0 7810  cn 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-iota 5178  df-fv 5224  df-ov 5877  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-inn 8918
This theorem is referenced by:  eluz2n0  9568  flqdiv  10318  modsumfzodifsn  10393  facne0  10712  gcdnncl  11962  gcdeq0  11972  dvdsgcdidd  11989  mulgcd  12011  sqgcd  12024  lcmeq0  12065  lcmgcdlem  12071  qredeu  12091  cncongr1  12097  prmind2  12114  isprm5lem  12135  divgcdodd  12137  oddpwdclemxy  12163  oddpwdclemodd  12166  divnumden  12190  hashdvds  12215  pythagtriplem4  12262  pythagtriplem19  12276  pcprendvds2  12285  pcpremul  12287  pceulem  12288  pcqmul  12297  pc2dvds  12323  pcaddlem  12332  pcadd  12333  pcmpt2  12336  pcmptdvds  12337  pcbc  12343  expnprm  12345  prmpwdvds  12347  pockthlem  12348  4sqlem8  12377  4sqlem9  12378  4sqlem10  12379  lgsval2lem  14304  2sqlem3  14346  2sqlem8  14352
  Copyright terms: Public domain W3C validator