| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0d | GIF version | ||
| Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnne0 9134 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ≠ wne 2400 0cc0 7995 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-inn 9107 |
| This theorem is referenced by: eluz2n0 9761 flqdiv 10538 modsumfzodifsn 10613 facne0 10954 bitsmod 12462 gcdnncl 12483 gcdeq0 12493 dvdsgcdidd 12510 mulgcd 12532 sqgcd 12545 lcmeq0 12588 lcmgcdlem 12594 qredeu 12614 cncongr1 12620 prmind2 12637 isprm5lem 12658 divgcdodd 12660 oddpwdclemxy 12686 oddpwdclemodd 12689 divnumden 12713 hashdvds 12738 pythagtriplem4 12786 pythagtriplem19 12800 pcprendvds2 12809 pcpremul 12811 pceulem 12812 pcqmul 12821 pc2dvds 12848 pcaddlem 12857 pcadd 12858 pcmpt2 12862 pcmptdvds 12863 pcbc 12869 expnprm 12871 prmpwdvds 12873 pockthlem 12874 4sqlem8 12903 4sqlem9 12904 4sqlem10 12905 4sqlem12 12920 4sqlem14 12922 4sqlem17 12925 znrrg 14618 dvply1 15433 mpodvdsmulf1o 15658 lgsval2lem 15683 lgsquad2lem1 15754 2sqlem3 15790 2sqlem8 15796 |
| Copyright terms: Public domain | W3C validator |