ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnne0d GIF version

Theorem nnne0d 8966
Description: A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnne0d (𝜑𝐴 ≠ 0)

Proof of Theorem nnne0d
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnne0 8949 . 2 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
31, 2syl 14 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wne 2347  0cc0 7813  cn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-iota 5180  df-fv 5226  df-ov 5880  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-inn 8922
This theorem is referenced by:  eluz2n0  9572  flqdiv  10323  modsumfzodifsn  10398  facne0  10719  gcdnncl  11970  gcdeq0  11980  dvdsgcdidd  11997  mulgcd  12019  sqgcd  12032  lcmeq0  12073  lcmgcdlem  12079  qredeu  12099  cncongr1  12105  prmind2  12122  isprm5lem  12143  divgcdodd  12145  oddpwdclemxy  12171  oddpwdclemodd  12174  divnumden  12198  hashdvds  12223  pythagtriplem4  12270  pythagtriplem19  12284  pcprendvds2  12293  pcpremul  12295  pceulem  12296  pcqmul  12305  pc2dvds  12331  pcaddlem  12340  pcadd  12341  pcmpt2  12344  pcmptdvds  12345  pcbc  12351  expnprm  12353  prmpwdvds  12355  pockthlem  12356  4sqlem8  12385  4sqlem9  12386  4sqlem10  12387  lgsval2lem  14450  2sqlem3  14503  2sqlem8  14509
  Copyright terms: Public domain W3C validator